Cell Imaging Banner

SNAP-tag® Substrates

NEB offers a large selection of fluorescent labels (substrates) for SNAP-tag fusion proteins. SNAP-tag® substrates consist of a fluorophore conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. Substrates label the SNAP-tag® without the need for additional enzymes. Cell-permeable substrates (SNAP-Cell®) are suitable for both intracellular and cell-surface labeling, whereas non-cell-permeable substrates (SNAP-Surface®) are specific for fusion proteins expressed on the cell surface only.

SNAP-tag®, SNAP-Cell® and SNAP-Surface® are registered trademarks of New England Biolabs, Inc.


Choose Type:

FAQs for SNAP-tag® Substrates
Protocols for SNAP-tag® Substrates
    Publications related to SNAP-tag® Substrates
  1. Maffei, M., Morelli, C., Graham, E., Patriarca, S., Donzelli, L., Doleschall, B., de Castro, Reis, F., Nocchi, L., Chadick, C.H., Reymond, L., Correa, I.R., Jr., Johnsson, K., Hackett, J.A., Heppenstall, P.A 2019. A ligand based system for receptor specific delivery of proteins Sci Rep. 9(1), PubMedID: 31844114, DOI: 10.1038/s41598-019-55797-1
  2. La Clair, J.J. et al. 2004. Manipulation of carrier proteins in antibiotic biosynthesis Chem Biol. 11, PubMedID: 15123281, DOI:
  3. George N. et al. 2004. Specific labeling of cell surface proteins with chemically diverse compounds J Am Chem Soc. 126, PubMedID: 15264811, DOI:
  4. Prummer M. et al. 2006. Post-translational covalent labeling reveals heterogeneous mobility of individual G protein-coupled receptors in living cells Chembiochem. 7, PubMedID: 16607667, DOI:
  5. Jacquier V. et al. 2006. Visualizing receptor trafficking in living Proc Natl Acad Sci U S A. 103, PubMedID: 16980412, DOI:
  6. Meyer B.H. et al. 2006. Covalent labeling of cell-surface proteins for in vivo FRET studies FEBS Lett. 580, PubMedID: 16497304, DOI:
  7. Meyer B.H. et al. 2006. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells Proc Natl Acad Sci U S A. 103, PubMedID: 16461466, DOI:
  8. Vivero-Pol L. et al. 2005. Multicolor imaging of cell surface proteins J Am Chem Soc. 127, PubMedID: 16159249, DOI:
  9. Yin J. et al. 2005. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling Chem Biol. 12, PubMedID: 16183024, DOI:
  10. Cravatt B.F. 2005. Live chemical reports from the cell surface Chem Biol. 12, PubMedID: 16183017, DOI:
  11. Yin J. et al. 2005. Labeling proteins with small molecules by site-specific posttranslational modification J Am Chem Soc. 126 , PubMedID: 15212504, DOI:
  12. Zelman-Femiak, M. et al. 2010. Covalent quantum dot receptor linkage via the acyl carrier protein for single-molecule tracking, internalization, and trafficking studies Biotechniques. 49, PubMedID: 20701592, DOI:
  13. Mosiewicz, K. A. et al. 2010. Phosphopantetheinyl Transferase-Catalyzed Formation of Bioactive Hydrogels for Tissue Engineering J Am Chem Soc. 132, PubMedID: 20373804, DOI:
  14. Waichman S. et al. 2010. Functional Immobilization and Patterning of Proteins by an Enzymatic Transfer Reaction Anal Chem. 82 , PubMedID: 20092261, DOI:
  15. Generosi J. et al. 2008. Photobleaching-free infrared near-field microscopy localizes molecules in neurons J Appl Physiol. 104, PubMedID: , DOI:
  16. Kropf M. et al. 2008. Subunit-specific surface mobility of differentially labeled AMPA receptor subunits Eur J Cell Biol. 87, PubMedID: 18547676, DOI:
  17. Generosi J. et al. 2008. AMPA receptor imaging by infrared scanning near-field optical microscopy Physica Status Solidi C: Current Topics in Solid State Physics. 5, PubMedID: , DOI:
  18. Sunbul M. et al. 2008. Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots Chem Commun. , PubMedID: 19030541, DOI:
  19. Zhou Z. et al. 2007. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases ACS Chem Biol. 2, PubMedID: 17465518, DOI:
  20. Liu E and Bruner S. D. 2007. Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases Chembiochem. 8, PubMedID: 17335097, DOI:
  21. Neugart F. et al. 2009. Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy Biochim Biophys Acta.  1788 , PubMedID: 19482006, DOI:
  22. Gralle M. et al. 2009. Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers J Biol Chem. 284, PubMedID: 19336403, DOI:
  23. Eggeling C. et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell Nature. 457 , PubMedID: 19098897, DOI:
Legal Information

This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at gbd@neb.com.

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.


Videos