INSTRUCTION MANUAL

NEBNext® Multiplex Oligos for Illumina® (Unique Dual Index UMI Adaptors RNA Set 1)

NEB #E7416S/L

96/384 reactions Version 4.0 2/24

Table of Contents

Workflow	2
Library Preparation Kits for use with NEBNext Multiplex Oligos for Illumina	
NEBNext Adaptor for Illumina Overview	
Section 1	
Setting up the PCR Reactions	4
Section 2	
Index Pooling Guidelines	<u>5</u>
Kit Components	11
Revision History	11

The NEBNext Multiplex Oligos for Illumina (Unique Dual Index UMI Adaptors RNA Set 1) Includes

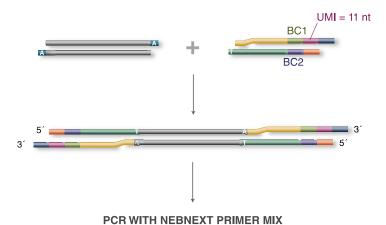
The volumes provided are sufficient for preparation of up to 96 reactions (NEB #E7416S) and 384 reactions (NEB #E7416L). All reagents should be stored at -20° C.*

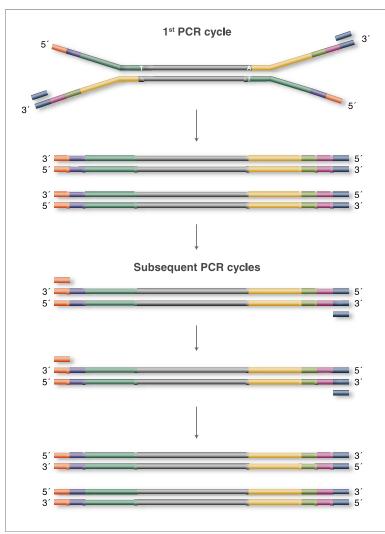
- NEBNext Primer Mix
- NEBNext UMI Adaptor Dilution Buffer
- NEBNext UMI RNA Adaptor Plate
 - Each well contains a unique dual index UMI adaptor (S size contains 1 plate, L size contains 4 plates)

For the list of additional materials required, please check the manual for your NEBNext Library Prep Kit.

* If the adaptor plate is thawed upon arrival, we recommend centrifuging the 96 well plate to collect the adaptor in the bottom of the well before re-freezing. If the plate arrived frozen, we recommend to store it at -20°C right away and centrifuge the plate prior to the first use to avoid unnecessary freeze/ thaw cycles.

Overview


The NEBNext Multiplex Oligos for Illumina (Unique Dual Index UMI Adaptors RNA Set 1) contains adaptors and primers that are ideally suited for multiplex sample preparation for next-generation sequencing on the Illumina platform (Illumina, Inc.). Each kit component must pass rigorous quality control standards, and for each new lot the entire set of reagents is functionally validated together by construction and sequencing of indexed libraries on an Illumina sequencing platform.


Where larger volumes, customized or bulk packaging are required, we encourage consultation with the Customized Solutions team at NEB. Please complete the NEB Custom Contact Form at www.neb.com/CustomContactForm to learn more.

Workflow

Designed for use in library prep for cDNA and RNA (but not Small RNA), the NEBNext Unique Dual Index UMI Adaptors enable high-efficiency adaptor ligation and high library yields. These adaptors contain all necessary sequences for sequencing on the Illumina platform and sample pooling prior to PCR amplification. The incorporation of a 12-base unique molecular identifier (UMI) allows 1) accurate identification and removal of duplicate reads, and 2) consensus sequence building and error correction, ideally suited for accurate analysis of quantitative NGS data analysis. The 96 8-base unique dual index UMI adaptors included in this kit are packaged in a single-use 96-well plate with a pierceable foil seal. NEBNext Oligos can be used with NEBNext products, and with other standard Illumina-compatible library preparation protocols that are based on TA single base overhang ligation.

Figure 1. Workflow demonstrating the use of NEBNext Multiplex Oligos for Illumina (Unique Dual Index UMI Adaptors RNA Set 1).

Library Preparation Kits for use with NEBNext Unique Dual Index UMI Adaptors RNA

Please refer to the kit specific **library preparation kit manual** for using the NEBNext Multiplex Oligos for Illumina **for additional required materials that are not included.**

For compatibility of NEBNext Multiplex Oligos please refer to the NEBNext Multiplex Oligos Selection Chart at www.neb.com/oligos

NEBNext Adaptor for Illumina Overview

NEBNext Adaptor for Illumina sequence:

5'-/5Phos/GAT CGG AAG AGC ACA CGT CTG AAC TCC AGT CdUA CAC TCT TTC CCT ACA CGA CGC TCT TCC GAT C-s-T-3'

The following sequences are used for adaptor trimming of NEBNext adaptors for Illumina:

- Read 1 AGATCGGAAGAGCACACGTCTGAACTCCAGTCA
- Read 2 AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

Section 1 Setting up the Ligation Reactions

Symbols

This caution sign signifies a step in the protocol that has multiple paths leading to the same end point but is dependent on a user variable, like the number of samples to be processed.

1.1. Ligation

For < 96 samples, follow the protocol in Section 1.1A. For 96 samples, follow the protocol in Section 1.1B.

1.1A. Setting up the ligation reactions (< 96 samples)

- 1.1A.1. Determine the number of libraries that will be ligated and pooled for subsequent sequencing.
- 1.1A.2. Ensure that you choose a valid combination of barcode adaptors based on color balance guidelines in Section 2.
- 1.1A.3. Thaw the NEBNext UMI RNA Adaptor Plate for 10-15 minutes on ice.
- 1.1A.4. Remove the hard plastic plate cover. If necessary centrifuge the plate $(280 \times g \text{ for } \sim 1 \text{ min})$ to collect all of the adaptor at the bottom of each well.
- 1.1A.5. Orient the NEBNext UMI RNA Adaptor Plate as indicated in Figure 1.1 (red stripe towards the user). With a pipette tip, pierce the desired well(s) (Figure 1.1A) and transfer the volume of adaptor mix required for the ligation reaction to the ligation plate/tubes (see specific library construction manual for protocol). It is important to change pipette tips before piercing a new well to avoid cross contamination of indexed adaptor s. Alternatively, the wells can be pierced using the bottom of clean PCR strip tubes (see Figure 1.1B) prior to pipetting the adaptor mix. Use a new, clean strip tube for each new well to be pierced.

Note: Each well contains a unique pair of index adaptors. There is enough adaptor in each well for one library. Do not reuse adaptor if the seal has been previously pierced to avoid contamination with other indexed adaptors.

1.1A.6. Proceed with the ligation reaction according to the specific library construction manual.

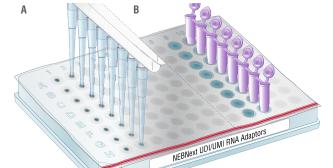


Figure 1.1. NEBNext UMI RNA Adaptor Plate

1.1B Setting up the ligation reactions (96 samples)

- 1.1B.1. Thaw the NEBNext UMI RNA Adaptor Plate for 10-15 minutes on ice.
- 1.1B.2. Remove the hard plastic plate cover. If necessary, centrifuge the plate $(280 \times g \text{ for } \sim 1 \text{ min})$ to collect all of the adaptor at the bottom of each well.
- 1.1B.3. Orient the NEBNext UMI RNA Adaptor Plate as indicated in Figure 1.1 (red stripe towards the user). With a pipette tip, pierce the wells (Figure 1.1A) and transfer the volume of adaptor required for the ligation reaction to a 96 well plate (see specific library construction manual for protocol). It is important to change pipette tips before piercing a new well to avoid cross contamination of indexed adaptors. Alternatively, the wells can be pierced using the bottom of clean PCR strip tubes (see Figure 1.1B) prior to pipetting the adaptor mix. Use a new, clean strip tube for each new well to be pierced.

Note: Each well contains a unique pair of index adaptors. There is enough adaptor in each well for one ligation. Do not reuse adaptor if the seal has been previously pierced to avoid contamination with other indexed adaptors.

1.1B.4. Proceed with the ligation reaction according to the specific library construction manual.

Section 2

Index Pooling Guidelines: 96 Reaction Kit

For all HiSeq®/MiSeq® sequencers:

Illumina uses four channel chemistry with a red laser/LED to sequence bases A and C and a green laser/LED to sequence bases G and T. For each cycle, both the red and the green channel need to be read to ensure proper image registration (i.e. A or C must be in each cycle, and G or T must be in each cycle). If this color balance is not maintained, sequencing the index read could fail. The following tables list some valid combinations (up to 8-plex) for each Set that can be sequenced together. For combinations > 8 choose any column and add any plex combinations as needed.

For NovaSeq®6000/ NextSeq®/MiniSeq®:

Utilize red/ green or blue/ green 2 color chemistry. Valid index combinations must include some indices that do not start with GG in the first two cycles.

See Illumina document Document # 1000000041074 v12 Chemistry and imaging on MiSeq - Illumina Knowledge

For NovaSeq®X and X Plus:

Utilize blue/ green 2 color chemistry. Valid index combinations must include some indices that do not start with GG in the first two cycles For additional NovaSeq X and X Plus color balancing guidelines please contact NEB technical support at info@neb.com.

Low Plex pooling options shown here are only for Illumina four channel chemistry.

Table 2.1. Index Pooling Guidelines

PLEX	WELL POSITION
< 4	Not recommended
	A6, B6, C6, D6
	A12, B12, C12, D12
	B6, C6, D6, E6
4	B12, C12, D12, E12
4	C1, D1, E1, F1
	C7, D7, E7, F7
	E4, F4, G4, H4
	E10, F10, G10, H10
	A1, B1, C1, D1, E1
	A6, B6, C6, D6, E6
	A7, B7, C7, D7, E7
	A12, B12, C12, D12, E12
	B1, C1, D1, E1, F1
	B6, C6, D6, E6, F6
	B7, C7, D7, E7, F7
5	B12, C12, D12, E12, F12
]	C1, D1, E1, F1, G1
	C2, D2, E2, F2, G2
	C4, D4, E4, F4, G4
	C7, D7, E7, F7, G7
	C8, D8, E8, F8, G8
	C10, D10, E10, F10, G10
	D4, E4, F4, G4, H4
	D10, E10, F10, G10, H10
6–7	Any 5 plex plus 1–2 adjacent wells from the same column
8	Any column

Four Channel Chemistry Color Balancing

*Forward Strand Workflow for the following instruments: NovaSeq 6000 with v1.0 reagents kits, MiniSeq with rapid reagent kits, MiSeq[®], HiSeq[®] 2000/2500 (pair-end flow cell), HiSeq 3000/4000 (single-read flow cell).

*Reverse Complement Workflow for the following instruments: iSeq 100, MiniSeq with standard reagent kits, NextSeq Systems, NovaSeq 6000 with v1.5 reagent kits, HiSeq 2000/5000 (single-read flow cell), HiSeq 3000/4000 (paired-end flow cell).

See Illumina Document "Indexed Sequencing Overview" 15057455 and Illumina Guidelines for reverse complementing i5 sequences" for demultiplexing Illumina Knowledge Article #1800 <u>Guidelines for reverse complementing i5 sequences for demultiplexing - Illumina Knowledge</u>.

Good and Bad Examples for Pooling and Color Balancing

Table 2.2. Listed below are index sequences color coded to correspond to the four color chemistry red/green channel. For combinations of valid indices, ensure that you will have signal in both the red and green channels in each cycle. See below for examples of Good and Bad index combinations based on four color chemistry guidelines:

											BAl	D												
WELL]	EXPI	ECTI	ED i7	IND	EX F	REAI)	EXPECTED i5 INDEX READ															
POSITION										F		VARI ORK			D			REV		SE CO			ENT	
E8	Т	Α	Т	G	G	С	Α	С	Т	Т	G	С	G	Α	G	Α	Т	С	Т	С	G	С	Α	Α
F8	G	Α	Α	Т	C	Α	C	С	G	Α	Α	C	G	A	A	G	С	Т	Т	C	G	Т	Т	C
G8	G	Т	A	A	G	G	Т	G	С	G	A	Α	Т	Т	G	C	G	C	A	Α	Т	Т	C	G
Н8	С	G	Α	G	A	G	Α	Α	G	G	Α	A	G	A	G	Α	Т	C	Т	C	Т	Т	C	C
	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	X	X	✓	✓	✓	✓	✓	✓	X	X	✓	✓	✓
A1	Т	Т	Α	С	С	G	Α	С	С	G	Α	Α	Т	Α	С	G	C	G	Т	Α	Т	Т	G	G
B1	Т	C	G	Т	C	Т	G	Α	G	Т	С	C	Т	Т	G	Α	Т	C	A	Α	G	G	Α	С
C1	Т	Т	С	С	Α	G	G	Т	С	Α	G	Т	G	C	Т	Т	Α	A	G	C	Α	C	Т	G
D1	Т	Α	C	G	G	Т	С	Т	Т	C	C	Α	Т	Т	G	C	G	C	Α	Α	Т	G	G	A
	x	✓	✓	✓	✓	X	✓	✓	✓	✓	✓	✓	X	✓	✓	✓	✓	✓	✓	X	✓	✓	✓	✓

											GOC	D												
WELL	I	EXPI	ECTI	ED i7	IND	EX R	EAL)	EXPECTED i5 INDEX READ															
POSITION										F	-	VAR ORK			D			REV			OMP XFLO		ENT	
C1	Т	Т	С	С	Α	G	G	Т	С	Α	G	Т	G	С	Т	Т	Α	Α	G	С	Α	С	G	G
D1	Т	A	C	G	G	Т	C	Т	Т	C	C	A	Т	Т	G	C	G	С	A	A	Т	G	G	Α
E1	A	A	G	A	С	C	G	Т	G	Т	C	G	A	Т	Т	G	С	A	A	Т	С	G	A	С
F1	С	Α	G	G	Т	Т	С	Α	Α	Т	Α	A	C	G	C	C	G	G	C	G	Т	Т	Α	Т
	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	1																							
A12	С	G	G	С	Α	Т	Т	Α	G	Т	С	Α	G	Т	С	Α	Т	G	Α	С	Т	G	С	С
B12	С	A	С	G	С	A	A	Т	С	C	Т	Т	С	C	A	Т	Α	Т	G	G	Α	A	G	G
C12	G	G	A	A	Т	G	Т	C	A	G	G	A	A	C	A	С	G	Т	G	Т	Т	С	С	Т
D12	Т	G	G	Т	G	A	A	G	С	Т	Т	Α	C	A	G	C	G	С	Т	G	Т	A	A	G
	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

The index adaptor sequences for different Illumina sequencer input sheets are indicated in Section 3.

Two Color Chemistry Color Balancing

NovaSeq 6000, NextSeq (500, 550, 1000 and 2000) and MiniSeq use red/ green or blue/ green 2 color chemistry to simplify nucleotide detection. See Sequencing Chemistry (illumina.com) Illumina Document # 1000000041074 v12 . For multiplexing a small number of samples, make sure the final index pool contains some indices that do not start with GG in the first two cycles. Listed here are some examples of good (signal in at least one channel for the first 2 cycles) and bad (the index read begins with GG) index combinations.

											GOO	OD												
WELL	1	EXPI	ECTE	E D i7	IND	EX R	REAL)]	EXP	ECTI	ED i5	IND	EX R	REAI)				
POSITION										F		VAR ORK	_ ~ _		D			REV		SE CO		LEM W	ENT	
A12	С	G	G	С	Α	Т	Т	Α	G	Т	С	Α	G	Т	С	Α	Т	G	Α	С	Т	G	С	С
B12	С	A	C	G	С	A	Α	Т	С	C	Т	Т	С	C	Α	Т	Α	Т	G	G	A	A	G	G
C12	G	G	Α	A	Т	G	Т	С	Α	G	G	Α	A	C	Α	С	G	Т	G	Т	Т	С	С	Т
D12	Т	G	G	Т	G	A	A	G	С	Т	Т	A	С	A	G	C	G	С	Т	G	Т	A	A	G
	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

											BA	D												
WELL	I	EXPE	ECTI	ED i7	IND	EX R	EAI)]	EXPI	ECTI	ED i5	IND	EX F	REAL)				
POSITION										F		VARI ORK			D			REV		E CO			ENT	
C12	G	G	Α	Α	Т	G	Т	С	Α	G	G	Α	Α	С	Α	С	G	Т	G	Т	Т	С	С	Т
E12	G	G	A	C	A	Т	С	Α	Т	A	С	C	Т	G	С	Α	Т	G	С	Α	G	G	Т	A
F12	G	G	Т	G	Т	A	С	A	Α	G	A	С	G	С	Т	A	Т	A	G	С	G	Т	C	Т
G11	G	G	Т	Т	G	A	A	С	Т	С	С	A	С	G	Т	Т	Α	A	С	G	Т	G	G	Α
	X	X	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓

Section 3 Index Sequences

Table 3.1 Index Sequences

WELL	EXPECTED	i7 INDEX READ		EXPECTED i5 INDEX	K READ
POSITION	i7 INDEX ID		i5 INDEX ID	FORWARD STRAND WORKFLOW	REVERSE COMPLEMENT WORKFLOW
A1	S 7 6 2	TTACCGAC	S 5 1 2	CGAATACG	CGTATTCG
B1	S 7 1 3	TCGTCTGA	S 5 8 6	GTCCTTGA	TCAAGGAC
C1	S 7 3 6	TTCCAGGT	S 5 4 3	CAGTGCTT	AAGCACTG
D1	S 7 0 9	TACGGTCT	S 5 7 5	TCCATTGC	GCAATGGA
E1	S 7 3 2	AAGACCGT	S 5 5 0	GTCGATTG	CAATCGAC
F1	S 7 7 4	CAGGTTCA	S 5 0 6	ATAACGCC	GGCGTTAT
G1	S 7 4 7	TAGGAGCT	S 5 2 4	GCCTTAAC	GTTAAGGC
H1	S 7 9 4	TACTCCAG	S 5 9 0	GGTATAGG	CCTATACC
A2	S 7 2 9	AGTGACCT	S 5 9 1	TCTAGGAG	CTCCTAGA
B2	S 7 7 7	AGCCTATC	S 5 2 6	TGCGTAAC	GTTACGCA
C2	S 7 7 2	TCATCTCC	S 5 6 7	CTTGCTAG	CTAGCAAG
D2	S 7 2 5	CCAGTATC	S 5 3 8	AGCGAGAT	ATCTCGCT
E2	S 7 5 5	TTGCGAGA	S 5 6 6	TATGGCAC	GTGCCATA
F2	S 7 6 0	GAACGAAG	S 5 1 1	GAATCACC	GGTGATTC
G2	S 7 1 6	CGAATTGC	S 5 5 9	GTAAGGTG	CACCTTAC
H2	S 7 0 8	GGAAGAGA	S 5 2 1	CGAGAGAA	TTCTCTCG
A3	S 7 0 2	TCGGATTC	S 5 2 3	CGCAACTA	TAGTTGCG
В3	S 7 9 6	CTGTACCA	S 5 0 7	CACAGACT	AGTCTGTG
C3	S 7 5 7	GAGAGTAC	S 5 4 5	TGGAAGCA	TGCTTCCA
D3	S 7 8 3	TCTACGCA	S 5 4 6	CAATAGCC	GGCTATTG
E3	S 7 2 2	GCAATTCC	S 5 7 8	CTCGAACA	TGTTCGAG
F3	S 7 1 0	CTCAGAAG	S 5 8 1	GGCAAGTT	AACTTGCC
G3	S 7 7 0	GTCCTAAG	S 5 4 0	AGCTACCA	TGGTAGCT
Н3	S 7 3 4	GCGTTAGA	S 5 9 2	CAGCATAC	GTATGCTG
A4	S 7 6 3	CAAGGTAC	S 5 0 5	CGTATCTC	GAGATACG
B4	S 7 9 7	AGACCTTG	S 5 0 1	TTACGTGC	GCACGTAA
C4	S 7 3 5	GTCGTTAC	S 5 5 4	AGCTAAGC	GCTTAGCT
D4	S 7 2 7	GTAACCGA	S 5 9 8	AAGACACC	GGTGTCTT
E4	S 7 4 2	GAATCCGT	S 5 5 1	CAACTCCA	TGGAGTTG
F4	S 7 9 5	CATGAGCA	S 5 1 7	GATCTTGC	GCAAGATC
G4	S 7 4 9	CTTAGGAC	S 5 6 5	CTTCACTG	CAGTGAAG
H4	S 7 7 3	ATCTGACC	S 5 9 3	CTCGACTT	AAGTCGAG
A5	S769	TCCTCATG	S 5 1 9	GTACACCT	AGGTGTAC
B5	S 7 5 2	AGGATAGC	S 5 4 4	CCAAGGTT	AACCTTGG
C5	S 7 0 4	GGAGGAAT	S 5 8 5	GAACGGTT	AACCGTTC
D5	S 7 1 5	GACGTCAT	S 5 1 8	CCAGTTGA	TCAACTGG
E5	S 7 5 3	CCGCTTAA	S 5 4 8	GTCATCGT	ACGATGAC
F5	S 7 5 8	GACGAACT	S 5 6 8	CAATGCGA	TCGCATTG
G5	S 7 8 4	TCCACGTT	S 5 4 1	GGTTGAAC	GTTCAACC
Н5	S 7 1 4	AACCAGAG	S 5 2 0	CTTCGGTT	AACCGAAG

POSITION	WELL	EXPECTED	o i7 INDEX READ		EXPECTED i5 INDEX	READ
B6 8779 CCTTCCAT \$589 CACGCAAT ATTGCGTG C6 \$788 AGGAACAC \$587 GGAATGTC GACATTCC D6 \$739 CTTACAGC \$576 GGACATCA TGATGTCC E6 \$728 AGACGCTA \$576 GGACATCA TGATGTCC P6 \$728 AGACGCTA \$582 GGTGTACA TGATGTCC G6 \$780 CAACACAG \$530 GATAGCCA TGGCTATC H6 \$761 GTACCACA \$533 CCACAACA TGTTGTGG A7 \$712 CGAATACG \$553 TTACCGAC TGTGGTAA B7 \$786 GTCCTTGA \$531 TCGTCTGA TCAGACGA C7 \$743 CAGTGCTT \$536 TTCCAGGT ACCTGGAA C7 \$743 CAGTGCTT \$536 TTCCAGGT ACCGTCTT E7 \$750 GTCGATTG \$539 TACGGTCT ACGGTCTT F7 \$760 ATAACGCC \$574 C	POSITION				1	
C6 S788 AGGAACAC S587 GGAATGTC GACATTCC D6 8739 CTTACAGC S503 TGGTGAAG CTTCACCA E6 8737 TACCTGCA S576 GGACATCA TGATGTCC F6 8788 AGACGCTA S582 GGTGTACA TGGCTATC H6 8761 GTACCACA S533 CCACAACA TGGTTGG H6 8761 GTACCACA S533 CCACAACA TGTTGTGG H7 8712 CGAATACG S562 TTACCGAC GTCGGTAA B7 8786 GTCCTTGA S513 TCCAGGT ACCTGGAA D7 8775 TCCATTGC S509 TACGGTCT AGACCGTA E7 8750 GTCGATTG S532 AAGACCGT AGCTCTT F7 8706 ATAACGCC S574 CAGGTCA TGCTCTA H7 8790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 8791 TCTAGGAG S529 AGTGAC	A6	S 7 7 1	GTCAGTCA	S 5 3 1	CGGCATTA	TAATGCCG
D6 S739 CTTACAGC S503 TGGTGAAG CTTCACCA E6 S337 TACCTGCA S576 GGACATCA TGATGTCC F6 S728 AGACGCTA S582 GGTTACA TGTACCACC G6 S780 CAACACAG S530 GATAGCA TGGTATC H6 S761 GTACCACA S533 CCACAACA TGTTGTGG A7 S712 CGAATACG S562 TTACCGAC GTCGGTAA B7 S786 GTCCTTGA S513 TCCTTGA TCAGACGA C7 S743 CAGTGCTT S536 TTCCAGGT ACCTGGAA D7 S775 TCCATTGC S509 TACGGTT ACCGGTAA E7 S750 GTCGATTG S532 AAGACCGT ACGGTCTT F7 S706 ATAACGCC S574 CAGGTTCA TGAACCTG G7 S724 GCCTTAAC S547 TAGCGACT AGCTCCTA B8 S726 TGCGTAAC S577 AGCCT	В6	S779	CCTTCCAT	S 5 8 9	CACGCAAT	ATTGCGTG
E6 8737 TACCTGCA 8576 GGACATCA TGATGTCC F6 8728 AGACGCTA 8582 GGTGTACA TGTACACC G6 8780 CAACACAG 8530 GATAGCCA TGGCTATC H6 8761 GTACCACA 8533 CCACAACA TGTGTGG A7 8712 CGAATACG 8562 TTACCGAC GTCGGTAA B7 8786 GTCCTTGA 8513 TCCAGGT ACCTGGAA C7 8743 CAGTGCTT 8536 TTCCAGGT ACCTGGAA D7 8775 TCCATTGC 8559 TACGGTCT ACGGTCTT E7 8750 GTCGATTG 8532 AAGACCGT ACGGTCTT F7 8706 ATAACGCC 8574 CAGGTCTA TGAACCTG G7 8724 GCCTTAAC 8547 TAGGACT AGCTCCTA B8 8791 TCTAGGAG 8529 AGTACCT AGGTCACT C8 8767 CTTGCTAG 8577 AGCCT	C6	S 7 8 8	AGGAACAC	S 5 8 7	GGAATGTC	GACATTCC
F6	D6	S739	CTTACAGC	S 5 0 3	TGGTGAAG	CTTCACCA
G6 S780 CAACACAG S530 GATAGCCA TGGCTATC H6 S761 GTACCACA S533 CCACAACA TGTTGTGG A7 S712 CGAATACG S562 TTACCGAC GTCGTAA B7 S786 GTCCTTGA S513 TCGTCTGA TCAGACGA C7 S743 CAGTGCTT S536 TTCCAGGT ACCTGGAA D7 S775 TCCATTGC S509 TACGGTCT AGACCGTA E7 S750 GTCGATTG S532 AAGACCGT ACGGTCTT E7 S706 ATAACGCC S574 CAGGTTCA TGAACCTG G7 S724 GCCTTAAC S547 TAGGAGCT AGCTCCTA H7 S790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S529 AGTGACCT AGCTCACT B8 S726 TGCGTAAC S577 AGCCTATC GATAGGCT C8 S767 CTTGCTAG S572 TC	E6	S 7 3 7	TACCTGCA	S 5 7 6	GGACATCA	TGATGTCC
H6 S761 GTACCACA S533 CCACAACA TGTTGTGG A7 S712 CGAATACG S562 TTACCGAC GTCGGTAA B7 S786 GTCCTTGA S513 TCGTCTGA TCAGACGA C7 S743 CAGTGCTT S536 TTCCAGGT ACCTGGAA D7 S775 TCCATTGC S509 TACGGTCT AGACCGTA E7 S750 GTCGATTG S532 AAGACCGT ACGGTCTT F7 S706 ATAACGCC S574 CAGGTTCA TGAACCTG G7 S724 GCCTTAAC S547 TAGGAGCT AGCTCCTA H7 S790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S529 AGTGACCT AGGTCACT B8 S726 TGCGTAAC S577 AGCCTACT GATAGGCT C8 S767 CTTGGTAG S572 TCATCTCC GATACTGG C8 S761 TATGGCAC S555 T	F6	S 7 2 8	AGACGCTA	S 5 8 2	GGTGTACA	TGTACACC
A7 8712 CGAATACG 8562 TTACCGAC GTCGGTAA B7 8786 GTCCTTGA 8513 TCGTCTGA TCAGACGA C7 8743 CAGTGCTT 8536 TTCCAGGT ACCTGGAA D7 8775 TCCATTGC 8509 TACGGTCT AGACCGTA E7 8750 GTCGATTG 8532 AAGACCGT ACGGTCTT F7 8706 ATAACGCC 8574 CAGGTTCA TGAACCTGA G7 8724 GCCTTAAC 8547 TAGGAGCT AGCTCCTA H7 8790 GGTATAGG 8594 TACTCCAG CTGGAGTA A8 8791 TCTAGGAG 8529 AGTGACCT AGGTCACT B8 8726 TCTGCTAG 8577 AGCCTATC GATAGGCT C8 8767 CTTGCTAG 8572 TCATCTCC GGAGATGA B8 8766 TATGGCAC 8555 TTGCGAGA TCTCGCAA F8 8711 GAATCACC 8560	G6	S 7 8 0	CAACACAG	S 5 3 0	GATAGCCA	TGGCTATC
B7 S786 GTCCTTGA S513 TCGTCTGA TCAGAGGA C7 S743 CAGTGCTT S536 TTCCAGGT ACCTGGAA D7 S775 TCCATTGC S509 TACGGTCT AGACCGTA E7 S750 GTCGATTG S532 AAGACCGT ACGGTCTTA F7 S706 ATAACGCC S574 CAGGTTCA TGAACCTG G7 S724 GCCTTAAC S547 TAGGAGCT AGCTCCTA H7 S790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S577 AGCCTATC GATAGGCT C8 S767 CTTGCTAG S572 TCATCTCC GGAGATGA D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560	Н6	S 7 6 1	GTACCACA	S 5 3 3	CCACAACA	TGTTGTGG
C7 S743 CAGTGCTT S536 TTCCAGGT ACCTGGAA D7 S775 TCCATTGC S509 TACGGTCT AGACCGTA E7 S750 GTCGATTG S532 AAGACCGT ACGGTCTT F7 S706 ATAACGCC S574 CAGGTTCA TGAACCTG G7 S724 GCCTTAAC S547 TAGGAGCT AGCTCCTA H7 S790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S529 AGTGACCT AGGTCACT B8 S726 TGCGTAAC S577 AGCCTATC GATAGGCT C8 S767 CTTGCTAG S572 TCATCTCC GGAGATGA D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAA TCTCGCAA F8 S711 GAATCACC S560 GAACGAAG CTTCTTC G8 S759 GTAACGAG CTCTTCTC	A7	S 7 1 2	CGAATACG	S 5 6 2	TTACCGAC	GTCGGTAA
D7 8775 TCCATTGC 8509 TACGGTCT AGACCGTA E7 8750 GTCGATTG 8532 AAGACCGT ACGGTCT F7 8706 ATAACGCC 8574 CAGGTTCA TGAACCTG G7 8724 GCCTTAAC 8547 TAGGAGCT AGCTCCTA H7 8790 GGTATAGG 8594 TACTCCAG CTGGAGTA A8 8791 TCTAGGAG 8529 AGTGACCT AGGTCACT B8 8726 TGCGTAAC 8577 AGCCTATC GATAGGCT C8 8767 CTTGCTAG 8577 AGCCTATC GGAAGGCT C8 8766 TATGGCAC 8557 TCACTCC GGAAGTGA E8 8766 TATGGCAC 8555 TTGCGAGA TCTCGCAA F8 8711 GAATCACC 8560 GAACGAAG CTTCGTTC G8 8759 GTAAGGTG 8516 CGAATTGC GCAATTCG H8 8721 CGAGAGAA 8502 TCG	В7	S 7 8 6	GTCCTTGA	S 5 1 3	TCGTCTGA	TCAGACGA
E7 S750 GTCGATTG S532 AAGACCGT ACGGTCTT F7 S706 ATAACGCC S574 CAGGTTCA TGAACCTG G7 S724 GCCTTAAC S547 TAGGAGCT AGCTCCTA H7 S790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S529 AGTGACCT AGGTCACT B8 S726 TGCGTAAC S577 AGCCTATC GATAGGCT C8 S767 CTTGCTAG S572 TCATCTCC GGAGATGA D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560 GAACGAGA CTTCGTTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGGA TCTCTTCC A9 S723 CGCAACTA S506 CT	C7	S 7 4 3	CAGTGCTT	S 5 3 6	TTCCAGGT	ACCTGGAA
F7 S706 ATAACGCC S574 CAGGTTCA TGAACCTG G7 S724 GCCTTAAC S547 TAGGAGCT AGCTCCTA H7 S790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S529 AGTGACCT AGGTCACT B8 S726 TGCGTAAC S577 AGCCTATC GATAGGCT C8 S767 CTTGCTAG S572 TCATCTCC GGAGATGA D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560 GAACGAAG CTTCGTTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG G8 S721 CGAAGAA S508 GGAAGAG TCTCTTCC A9 S723 CGCAACTA S502 TCGGATC GAATCCGA C9 S745 TGGAAGCA S557 GAGA	D7	S 7 7 5	TCCATTGC	S 5 0 9	TACGGTCT	AGACCGTA
G7 S724 GCCTTAAC S547 TAGGAGCT AGCTCCTA H7 S790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S529 AGTGACCT AGGTCACT B8 S726 TGCGTAAC S577 AGCCTATC GATAGGCT C8 S767 CTTGCTAG S572 TCATCTCC GGAGATGA D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560 GAACGAAG CTTCGTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTTCC A9 S723 CGCAACTA S502 TCGGATC GAATCCGA B9 S707 CACAGACT S596 CTGACCA TGCGTACA C9 S745 TGGAAGCA S557 GAGA	E7	S 7 5 0	GTCGATTG	S 5 3 2	AAGACCGT	ACGGTCTT
H7 S790 GGTATAGG S594 TACTCCAG CTGGAGTA A8 S791 TCTAGGAG S529 AGTGACCT AGGTCACT B8 S726 TGCGTAAC S577 AGCCTATC GATAGGCT C8 S767 CTTGCTAG S572 TCATCTCC GGAGATGA D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560 GAACGAAG CTTCGTTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTTCC A9 S723 CGCAACTA S502 TCGGATTC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAACA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TC	F7	S 7 0 6	ATAACGCC	S 5 7 4	CAGGTTCA	TGAACCTG
A8 S791 TCTAGGAG S529 AGTGACCT AGGTCACT B8 S726 TGCGTAAC S577 AGCCTATC GATAGGCT C8 S767 CTTGCTAG S572 TCATCTCC GGAGATGA D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560 GAACGAAG CTTCGTTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTTCC A9 S723 CGCAACTA S502 TCGGATTC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S781 GGCAAGTT S510 C	G7	S 7 2 4	GCCTTAAC	S 5 4 7	TAGGAGCT	AGCTCCTA
B8 \$726 TGCGTAAC \$577 AGCCTATC GATAGGCT C8 \$767 CTTGCTAG \$572 TCATCTCC GGAGATGA D8 \$738 AGCGAGAT \$525 CCAGTATC GATACTGG E8 \$766 TATGGCAC \$555 TTGCGAGA TCTCGCAA F8 \$711 GAATCACC \$560 GAACGAAG CTTCGTTC G8 \$759 GTAAGGTG \$516 CGAATTGC GCAATTCG H8 \$721 CGAGAGAA \$508 GGAAGAG TCTCTTCC A9 \$723 CGCAACTA \$502 TCGGATC GAATCCGA B9 \$707 CACAGACT \$596 CTGTACCA TGGTACAG C9 \$745 TGGAAGCA \$557 GAGAGTAC GTACTCTC D9 \$746 CAATAGCC \$583 TCTACGCA TGCGTAGA E9 \$778 CTCGAACA \$522 GCAATTCC GGAATTGC F9 \$781 GGCAAGTT \$510 CTC	H7	S 7 9 0	GGTATAGG	S 5 9 4	TACTCCAG	CTGGAGTA
C8 S767 CTTGCTAG S572 TCATCTCC GGAGATGA D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560 GAACGAAG CTTCGTTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTTCC A9 S723 CGCAACTA S502 TCGGATC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCGAGA H9 S792 CAGCATAC S534 GC	A8	S 7 9 1	TCTAGGAG	S 5 2 9	AGTGACCT	AGGTCACT
D8 S738 AGCGAGAT S525 CCAGTATC GATACTGG E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560 GAACGAAG CTTCGTTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTCC A9 S723 CGCAACTA S502 TCGGATTC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAACGC H9 S792 CAGCATAC S534 GC	В8	S 7 2 6	TGCGTAAC	S 5 7 7	AGCCTATC	GATAGGCT
E8 S766 TATGGCAC S555 TTGCGAGA TCTCGCAA F8 S711 GAATCACC S560 GAACGAAG CTTCGTTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTTCC A9 S723 CGCAACTA S502 TCGGATTC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAAGGC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CTATCTC S563 C	C8	S 7 6 7	CTTGCTAG	S 5 7 2	TCATCTCC	GGAGATGA
F8 S711 GAATCACC S560 GAACGAAG CTTCGTTC G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTTCC A9 S723 CGCAACTA S502 TCGGATTC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAACGC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTG B10 S701 TTACGTG S535 G	D8	S 7 3 8	AGCGAGAT	S 5 2 5	CCAGTATC	GATACTGG
G8 S759 GTAAGGTG S516 CGAATTGC GCAATTCG H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTTCC A9 S723 CGCAACTA S502 TCGGATTC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAGGAC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S527 <t< td=""><td>E8</td><td>S 7 6 6</td><td>TATGGCAC</td><td>S 5 5 5</td><td>TTGCGAGA</td><td>TCTCGCAA</td></t<>	E8	S 7 6 6	TATGGCAC	S 5 5 5	TTGCGAGA	TCTCGCAA
H8 S721 CGAGAGAA S508 GGAAGAGA TCTCTTCC A9 S723 CGCAACTA S502 TCGGATTC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAGGAC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 <	F8	S 7 1 1	GAATCACC	S 5 6 0	GAACGAAG	CTTCGTTC
A9 S723 CGCAACTA S502 TCGGATTC GAATCCGA B9 S707 CACAGACT S596 CTGTACCA TGGTACAG C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAGGAC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC B10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542	G8	S 7 5 9	GTAAGGTG	S 5 1 6	CGAATTGC	GCAATTCG
B9 \$707 CACAGACT \$596 CTGTACCA TGGTACAG C9 \$745 TGGAAGCA \$557 GAGAGTAC GTACTCTC D9 \$746 CAATAGCC \$583 TCTACGCA TGCGTAGA E9 \$778 CTCGAACA \$522 GCAATTCC GGAATTGC F9 \$781 GGCAAGTT \$510 CTCAGAAG CTTCTGAG G9 \$740 AGCTACCA \$570 GTCCTAAG CTTAGGAC H9 \$792 CAGCATAC \$534 GCGTTAGA TCTAACGC A10 \$705 CGTATCTC \$563 CAAGGTAC GTACCTTG B10 \$701 TTACGTGC \$597 AGACCTTG CAAGGTCT C10 \$754 AGCTAAGC \$535 GTCGTTAC GTAACGAC D10 \$798 AAGACACC \$527 GTAACCGA TCGGTTAC E10 \$751 CAACTCCA \$542 GAATCCGT ACGGATTC F10 \$717 GATCTTGC \$595	Н8	S 7 2 1	CGAGAGAA	S 5 0 8	GGAAGAGA	TCTCTTCC
C9 S745 TGGAAGCA S557 GAGAGTAC GTACTCTC D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAGGAC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549	A9	S 7 2 3	CGCAACTA	S 5 0 2	TCGGATTC	GAATCCGA
D9 S746 CAATAGCC S583 TCTACGCA TGCGTAGA E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAGGAC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	B9	S 7 0 7	CACAGACT	S 5 9 6	CTGTACCA	TGGTACAG
E9 S778 CTCGAACA S522 GCAATTCC GGAATTGC F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAGGAC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	C9	S 7 4 5	TGGAAGCA	S 5 5 7	GAGAGTAC	GTACTCTC
F9 S781 GGCAAGTT S510 CTCAGAAG CTTCTGAG G9 S740 AGCTACCA S570 GTCCTAAG CTTAGGAC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	D9	S 7 4 6	CAATAGCC	S 5 8 3	TCTACGCA	TGCGTAGA
G9 S740 AGCTACCA S570 GTCCTAAG CTTAGGAC H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	E9	S 7 7 8	CTCGAACA	S 5 2 2	GCAATTCC	GGAATTGC
H9 S792 CAGCATAC S534 GCGTTAGA TCTAACGC A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	F9	S 7 8 1	GGCAAGTT	S 5 1 0	CTCAGAAG	CTTCTGAG
A10 S705 CGTATCTC S563 CAAGGTAC GTACCTTG B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	G9	S 7 4 0	AGCTACCA	S 5 7 0	GTCCTAAG	CTTAGGAC
B10 S701 TTACGTGC S597 AGACCTTG CAAGGTCT C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	Н9	S 7 9 2	CAGCATAC	S 5 3 4	GCGTTAGA	TCTAACGC
C10 S754 AGCTAAGC S535 GTCGTTAC GTAACGAC D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	A10	S 7 0 5	CGTATCTC	S 5 6 3	CAAGGTAC	GTACCTTG
D10 S798 AAGACACC S527 GTAACCGA TCGGTTAC E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	B10	S 7 0 1	TTACGTGC	S 5 9 7	AGACCTTG	CAAGGTCT
E10 S751 CAACTCCA S542 GAATCCGT ACGGATTC F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	C10	S 7 5 4	AGCTAAGC	S 5 3 5	GTCGTTAC	GTAACGAC
F10 S717 GATCTTGC S595 CATGAGCA TGCTCATG G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	D10	S 7 9 8	AAGACACC	S 5 2 7	GTAACCGA	TCGGTTAC
G10 S765 CTTCACTG S549 CTTAGGAC GTCCTAAG	E10	S 7 5 1	CAACTCCA	S 5 4 2	GAATCCGT	ACGGATTC
	F10	S 7 1 7	GATCTTGC	S 5 9 5	CATGAGCA	TGCTCATG
H10 S793 CTCGACTT S573 ATCTGACC GGTCAGAT	G10	S 7 6 5	CTTCACTG	S 5 4 9	CTTAGGAC	GTCCTAAG
	H10	S 7 9 3	CTCGACTT	S 5 7 3	ATCTGACC	GGTCAGAT

WELL	EXPECTE	D i7 INDEX READ		EXPECTED i5 INDEX	READ
POSITION	i7 INDEX ID		i5 INDEX ID	FORWARD STRAND WORKFLOW	REVERSE COMPLEMENT WORKFLOW
A11	S719	GTACACCT	S 5 6 9	TCCTCATG	CATGAGGA
B11	S 7 4 4	CCAAGGTT	S 5 5 2	AGGATAGC	GCTATCCT
C11	S 7 8 5	GAACGGTT	S 5 0 4	GGAGGAAT	ATTCCTCC
D11	S 7 1 8	CCAGTTGA	S 5 1 5	GACGTCAT	ATGACGTC
E11	S 7 4 8	GTCATCGT	S 5 5 3	CCGCTTAA	TTAAGCGG
F11	S 7 6 8	CAATGCGA	S 5 5 8	GACGAACT	AGTTCGTC
G11	S 7 4 1	GGTTGAAC	S 5 8 4	TCCACGTT	AACGTGGA
H11	S 7 2 0	CTTCGGTT	S 5 1 4	AACCAGAG	CTCTGGTT
A12	S 7 3 1	CGGCATTA	S 5 7 1	GTCAGTCA	TGACTGAC
B12	S 7 8 9	CACGCAAT	S 5 7 9	CCTTCCAT	ATGGAAGG
C12	S 7 8 7	GGAATGTC	S 5 8 8	AGGAACAC	GTGTTCCT
D12	S 7 0 3	TGGTGAAG	S 5 3 9	CTTACAGC	GCTGTAAG
E12	S 7 7 6	GGACATCA	S 5 3 7	TACCTGCA	TGCAGGTA
F12	S 7 8 2	GGTGTACA	S 5 2 8	AGACGCTA	TAGCGTCT
G12	S 7 3 0	GATAGCCA	S 5 8 0	CAACACAG	CTGTGTTG
H12	S 7 3 3	CCACAACA	S 5 6 1	GTACCACA	TGTGGTAC

Sequencing on the Illumina Platform

Pool equal molar amounts of libraries for sequencing on the Illumina platforms using the cycles settings shown in the table below.

RUN SEGMENT	CYCLE NUMBER
Read 1	X defined by users
Index 1 (i7)	8 (without UMI)
	20 (with UMI)
Index 2 (i5)	8
Read 2	X defined by users

Index Sequence File

For a link to download a sample sheet with the index sequences for use with the Illumina Experiment Manager (IEM) please go to our FAQ's tab on www.neb.com/E7416 or you can access the sample sheets by visiting the "Usage Guidelines" sub tab located under the "protocols, manuals and usage" tab on the E7416 product page.

Kit Components

The NEBNext Multiplex Oligos for Illumina (Unique Dual Index UMI Adaptors RNA Set 1) are functionally validated through library preparation using the NEBNext Library Prep Kits and sequencing on the Illumina platforms.

NEB #E7416S Table of Components

NEB#	CONCENTRATION	PRODUCT	VOLUME
E7417A	1 μΜ	NEBNext UMI RNA Adaptor Plate	1 plate (5 μl/well)
E7397A	40 μM (Total)	NEBNext Primer Mix	0.48 ml
E7398A		NEBNext UMI Adaptor Dilution Buffer	5 ml

NEB #E7416L Table of Components

NEB#	CONCENTRATION	PRODUCT	VOLUME
E7417A	1 μΜ	NEBNext UMI RNA Adaptor Plate	4 plates (5 μl/well)
E7397AA	40 μM (Total)	NEBNext Primer Mix	2 x 0.96 ml
E7398AA		NEBNext UMI Adaptor Dilution Buffer	20 ml

Revision History

REVISION #	DESCRIPTION	DATE
1.0	N/A	3/20
2.0	Updated tables to have the most current Illumina instrument information and removed HiSeqX.	3/21
3.0	Updated protocol.	8/22
4.0	Updated primer sequences, indexing pool guidelines, header/footer and legal footer.	2/24

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.

Products and content are covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB). The use of trademark symbols does not necessarily indicate that the name is trademarked in the country where it is being read, it indicates where the content was originally developed. See www.neb.com/trademarks. The use of these products may require you to obtain additional third-party intellectual property rights for certain applications. For more information, please email busdev@neb.com.

B CORPORATION $^{\otimes}$ is a registered trademark of B Lab IP, LLC, Inc.

ILLUMINA®, HISEQ®, MISEQ®, NEXTSEQ®, NOVASEQ® and MINISEQ® are registered trademarks of Illumina, Inc.

© Copyright 2024, New England Biolabs, Inc.; all rights reserved

