Quick T4 DNA Ligase supplied in: 50 mM KCl, 10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1 mM dithiothreitol and 50% glycerol.

2X Quick Ligation Reaction Buffer:
- 132 mM Tris-HCl
- 20 mM MgCl2
- 2 mM dithiothreitol
- 2 mM ATP
- 15% Polyethylene glycol (PEG 6000)
- pH 7.6 @ 25°C

Note: Mix thoroughly before use. Avoid repeated freeze/thaw cycles.

Quality Controls
The Quick Ligation Kit is tested for transformation efficiency using the following protocol.

LITMUS 28 vector is cut with either EcoRV (blunt) or HindIII (cohesive), treated with calf intestinal phosphatase and gel purified. Blunt inserts from a HaeIII digest of λ DNA are ligated into the respective vectors at a 3:1 insert:vector ratio using the Quick Ligation Protocol. Ligation products are transformed as described.

Each lot exceeds the following standards:
- Blunt ends: > 2 x 10^6
- Cohesive ends: > 5 x 10^6
- Uncut vector: 2 x 10^7

Ligation Time Course (0–15 minutes)

Ligation Time Course: LITMUS 28 vector (NEB #N3628) was cut with either EcoRV (blunt) or HindIII (cohesive), treated with calf intestinal phosphatase and gel purified. Blunt inserts from a HaeIII digest of ϕX174 DNA and cohesive inserts from a HindIII digest of λ DNA were ligated into the respective vectors at a 3:1 insert:vector ratio using the Quick Ligation Kit. Ligation products were transformed into chemically competent E. coli DH-5α cells and grown overnight on LB-amp plates at 37°C.

Transformation Protocol:
Quick Ligation products may be transformed by many different methods. The following protocol is recommended by New England Biolabs.

1. Thaw competent cells on ice.
2. Chill approximately 5 ng (2 µl) of the ligation mixture in a 1.5 ml microcentrifuge tube.
3. Add 50 µl of competent cells to the DNA. Mix gently by pipetting up and down or flicking the tube 4–5 times to mix the cells and DNA. Do not vortex.
4. Place the mixture on ice for 30 minutes. Do not mix.
5. Heat shock at 42°C for 30 seconds*. Do not mix.
6. Add 950 µl of room temperature media* to the tube.
7. Place tube at 37°C for 60 minutes. Shake vigorously (250 rpm) or rotate.
8. Warm selection plates to 37°C.
9. Spread 50–100 µl of the cells and ligation mixture onto the plates.
10. Incubate overnight at 37°C.

* Please note: For the duration and temperature of the heat shock step as well as for the media to be used during the recovery period, please follow the recommendations provided by the competent cells' manufacturer.

Plasmid Recircularization
Use the Quick Ligation Protocol with 50 ng of linearized vector without insert.

Example: A 1.9 kb EcoR V fragment was generated from λ DNA by PCR, cleaved to create EcoRV ends and inserted into EcoR V cleaved, dephosphorylated LITMUS 28 vector. The DNA was ligated using the Quick Ligation Protocol and transformed.

Cohesive End Ligation
Use the Quick Ligation Protocol with 50 ng of linearized dephosphorylated vector and a 3:1 molar excess of insert.

Example: Two 2 kb fragments from a HindIII digest of λ DNA were copurified from an agarose gel and inserted into HindIII cleaved, dephosphorylated pUC19 vector. The DNA was ligated using the Quick Ligation Protocol and transformed.

Blunt End Ligation
Use the Quick Ligation Protocol with 50 ng of linearized, dephosphorylated vector and a 3:1 molar excess of insert.

Example: A 1.9 kb EcoR V fragment was generated from λ DNA by PCR, cleaved to create EcoRV ends and inserted into EcoR V cleaved, dephosphorylated LITMUS 28 vector. The DNA was ligated using the Quick Ligation Protocol and transformed.
Example: Dephosphorylated, EcoRV-digested LITMUS 28 vector was ligated to HindIII linkers (8 mer) using the Quick Ligation Protocol. Ligation products were purified, digested with HindIII, repurified and recircularized using the Quick Ligation Protocol.

Vector: (1 µg) 6.7 µl
Linkers (20:1): (20 pmols) 3.5 µl
dH₂O: 34.8 µl
2X Quick Ligation Reaction Buffer: 50 µl
Quick T4 DNA Ligase 5 µl

Results (transformants/µg):
Control plasmid (uncut) 6.2 x 10⁶
Vector without linkers 3.0 x 10⁵
Hind III cut vector 3.9 x 10⁶
Vector + linkers 2.0 x 10⁵

Usage Notes
Some of the most critical parameters which should be controlled to ensure successful ligation and transformation are addressed below.

Cells: Competent cells can vary by several logs in their competence. Perceived ligation efficiency directly correlates to the competence of the cells used for transformation. Always transform uncut vector as a control for comparison purposes.

Electroporation: Electroporation can increase transformation efficiency by several logs. Before using the products of a Quick Ligation reaction for electrotransformation, it is necessary to reduce the PEG concentration. We recommend a spin column purification.

DNA: Purified DNA for ligations can be dissolved in dH₂O (Milli-Q water or equivalent is preferable); TE or other dilute buffers also work well. For optimum ligation, the volume of DNA and insert should be 10 µl before adding 2X Quick Ligation Reaction Buffer. For DNA volumes greater than 10 µl, increase the volume of 2X Quick Ligation Reaction Buffer such that it remains 50% of the reaction and correspondingly increase the volume of ligase.

The overall concentration of vector + insert should be between 1–10 µg/ml for efficient ligation. Insert:vector ratios between 2 and 6 are optimal for single insertions. Ratios below 2:1 result in lower ligation efficiency. Ratios above 6:1 promote multiple inserts. If you are unsure of your DNA concentrations, perform multiple ligations with varying ratios.

Time: Most ligations performed using the Quick Ligation Kit reach an end point at 5 minutes or less at 25°C. Incubation beyond this time provides no additional benefit. In fact, transformation efficiency starts to decrease after 2 hours and is reduced by up to 75% if the reaction is allowed to go overnight at 25°C.

Biology: Some DNA structures, including inverted and tandem repeats, are selected against by E. coli. Some recombinant proteins are not well tolerated by E. coli and can result in poor transformation or small colonies.

Calculation of Molarity of Ends
Molarity = ((µg/µl) ÷ (base pairs x 650 daltons)) x 2 ends

Example:
- Calculate the molarity of ends for a linearized 5 kb vector that has a concentration of 250 ng/µl:
 \[(0.25 \text{ µg/µl}) ÷ (5000 \text{ x } 650 \text{ daltons})] \times 2 = 154 \text{ nM}\]
- Calculate the molarity of ends if you put 50 ng of this vector in a 20 µl ligation reaction:
 \[50 \text{ ng} ÷ 20 \text{ µl} = 0.0025 \text{ µg/µl}
 \[(0.0025 \text{ µg/µl}) ÷ (5000 \text{ x } 650 \text{ daltons})] \times 2 = 1.54 \text{ nM}\]
- Determine the amount of a 1 kb insert needed to achieve a 3:1 insert:vector ratio:
 \[3 \times 1.54 \text{ nM} = 4.62 \text{ nM}
 \[(? \text{ µg/µl}) ÷ (1000 \text{ x } 650 \text{ daltons})] \times 2 = 4.62 \text{ nM}
 0.0015 \text{ µg/µl} \times 20 \text{ µl} = 0.03 \text{ µg} = 30 \text{ ng}\]
- Does this reaction fall within the optimal range of 1–10 µg/ml?
 \[(50 \text{ ng vector } + 30 \text{ ng insert}) ÷ 20 \text{ µl} = 4 \text{ µg/ml}\]