OneTag® Hot Start 2X Master Mix with GC Buffer

100 reactions (50 µl vol) Lot: 0141508
RECOMBINANT Store at –20°C Exp: 2/17

Description: OneTag Hot Start 2X Master Mix with GC Buffer is an optimized blend of Tag and Deep Vent® DNA Polymerases combined with an aptamer-based inhibitor. This enzyme blend is ideally suited to PCR applications from GC-rich templates including pure DNA solutions, bacterial colonies and cDNA products. The 3’ → 5’ exonuclease activity of Deep Vent DNA Polymerase increases the fidelity and robust amplification of Taq DNA Polymerase (1). The hot start nature of the enzyme offers convenience with decreased interference from primer dimers and secondary products. The convenient master mix formulation contains dNTPs, MgSO4, and other buffer components and stabilizers listed below, requiring only the addition of primers and DNA template for robust amplification.

Source: An E. coli strain that carries the Tag DNA Polymerase gene from Thermus aquaticus YT-1 and an E. coli strain that carries the Deep Vent® DNA Polymerase gene from Pyrococcus species GB-8.

Applications:
- GC-rich PCR
- High Sensitivity PCR
- High Throughput PCR
- Colony PCR
- Long PCR (up to -6 kb genomic)

Reagents Supplied with Enzyme:
- OneTag High GC Enhancer

Reaction Conditions: 1X OneTag Hot Start Master Mix with GC Buffer, DNA template and primers in a total reaction volume of 50 µl.

1X OneTag Hot Start Master Mix with GC Buffer:

- 80 mM Tris-SO4 (pH 9.2 @ 25°C)
- 2 mM MgSO4
- 20 mM (NH4)2SO4
- 0.2 mM dNTPs
- 5% Glycerol
- 5% DMSO
- 0.06% IGEPAL® CA-630
- 0.05% Tween® 20

25 units/ml OneTag Hot Start DNA Polymerase

OneTag High GC Enhancer:

- 10 mM Tris-HCl (pH 9.2 @ 25°C) 25% DMSO
- 25% Glycerol

Unit Definition: One unit is defined as the amount of enzyme that will incorporate 15 nmol of dNTP into acid insoluble material in 30 minutes at 75°C.

Unit Assay Conditions: 1X ThermoPol® Reaction Buffer, 200 µM dNTPs including [α-32P]-dTTP and 15 nM primed M13 DNA.

Heat Inactivation: No

Quality Control Assays

Buffer-dependent GC-rich (> 65% GC) PCR: 30 cycles of PCR amplification of 10 ng of human genomic DNA with 1X OneTag Hot Start Master Mix with GC Buffer in a 25 µl reaction in the presence of 0.2 µM primers resulted in the buffer-dependent production of the 739 bp gc-rich product.

Enhancer-dependent High GC (> 70% GC) PCR: 30 cycles of PCR amplification of 10 ng of human genomic DNA with 1X OneTag Hot Start Master Mix with GC Buffer in a 25 µl reaction in the presence of 0.2 µM primers and 20% OneTag High GC Enhancer resulted in the enhancer-dependent production of the 627 bp high GC product.

Note: Product specifications for individual components in the OneTag Hot Start 2X Master Mix with GC Buffer are available separately.

PCR: The Polymerase Chain Reaction (PCR) is a powerful and sensitive technique for DNA amplification. Taq DNA Polymerase is an enzyme widely used in PCR. The following guidelines are provided to ensure successful PCR using New England Biolabs’ OneTag 2X Master Mix with GC Buffer. These guidelines cover routine PCR reactions. Specialized applications may require further optimization.

Reaction Setup:
Due to the presence of the inhibitor, reactions can be assembled on the bench at room temperature and transferred to a thermocycler. No separate activation step is required to release the inhibitor from the enzyme.

Thermocycling Conditions for a Routine PCR:

<table>
<thead>
<tr>
<th>STEP</th>
<th>TEMP</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Denaturation</td>
<td>94°C</td>
<td>30 seconds</td>
</tr>
<tr>
<td>30 Cycles</td>
<td>45–68°C</td>
<td>15–60 seconds</td>
</tr>
<tr>
<td>Final Extension</td>
<td>68°C</td>
<td>1 minute/µl</td>
</tr>
<tr>
<td>Hold</td>
<td>4–10°C</td>
<td></td>
</tr>
</tbody>
</table>

General Guidelines:

1. Template:
 Use of high quality, purified DNA templates greatly enhances the success of PCR reactions. Recommended amounts of DNA template for a 50 µl reaction are as follows:

<table>
<thead>
<tr>
<th>DNA</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic</td>
<td>1 ng–1 µg</td>
</tr>
<tr>
<td>Plasmid or Viral</td>
<td>1 pg–1 ng</td>
</tr>
</tbody>
</table>

2. Primers:
 Oligonucleotide primers are generally 20–40 nucleotides in length and ideally have a GC content of 40–60%. Computer programs such as Primer3 (http://frodo.wi.mit.edu/primer3) can be used to design or analyze primers. The final concentration of each primer in a PCR reaction may be 0.05–1 µM, typically 0.2 µM.

3. Mg++ and Additives:
 Mg++ concentration of 1.5–2.0 mM is optimal for most PCR products generated with OneTag DNA Polymerase. The final Mg++ concentration in 1X OneTag Hot Start Master Mix with GC Buffer is 2 mM. This supports satisfactory amplification of most amplicons. However, Mg++ can be further optimized in 0.2 mM increments using MgSO4 (sold separately).

 Amplification of extremely difficult targets may be improved by the addition of 10–20% OneTag High GC Enhancer (included).

(see other side)
4. **Denaturation:**
No separate activation step is required to release the hot start inhibitor from the enzyme. An initial denaturation of 30 seconds at 94°C is sufficient to amplify most targets from pure DNA templates. For difficult templates, a longer denaturation of 2–4 minutes at 94°C is recommended prior to PCR cycling to fully denature the template. With colony PCR, an initial 2–5 minute denaturation at 94°C is recommended to lyse cells.

During thermocycling a 15–30 second denaturation at 94°C is recommended.

5. **Annealing:**
The annealing step is typically 15–60 seconds. Annealing temperature is based on the T_m of the primer pair and is typically 45–68°C. Annealing temperatures can be optimized by doing a temperature gradient PCR starting 5°C below the calculated T_m. We recommend using NEB’s T_m Calculator, available at www.neb.com/TmCalculator to determine appropriate annealing temperatures for PCR.

6. **Extension:**
The recommended extension temperature is 68°C. Extension times are generally 1 minute per kb. A final extension of 5 minutes at 68°C is recommended.

7. **Cycle Number:**
Generally, 25–35 cycles yields sufficient product. Up to 45 cycles may be required to detect low copy number targets.

8. **2-step PCR:**
When primers with annealing temperatures of 68°C or above are used, a 2-step thermocycling protocol (combining annealing and extension into one step) is possible.

9. **PCR Product:**
The majority of the PCR products generated using One Taq DNA Polymerase contain dA overhangs at the 3’ end; therefore the PCR products can be ligated to dT/dU-overhang vectors.

Notes:
One Taq Hot Start 2X Master Mix with GC Buffer is stable for fifteen freeze-thaw cycles when stored at –20°C.

One Taq Hot Start 2X Master Mix with GC Buffer is also stable for one month at 4°C, so for frequent use, an aliquot may be kept at 4°C.

References:

Companion Products Sold Separately:
- Magnesium Sulfate (MgSO_4_) Solution #B1003S 6.0 ml
- One Taq Hot Start 2X Master Mix with Standard Buffer #M0484S 100 reactions #M0484L 500 reactions
- One Taq Hot Start Quick-Load® 2X Master Mix with Standard Buffer #M0488S 100 reactions #M0488L 500 reactions
- One Taq Hot Start Quick-Load 2X Master Mix with GC Buffer #M0489S 100 reactions #M0489L 500 reactions
- One Taq DNA Polymerase #M0480S 200 units #M0480L 1,000 units #M0480X 5,000 units
- One Taq Hot Start DNA Polymerase #M0481S 200 units #M0481L 1,000 units #M0481X 5,000 units

ISO 9001
ISO 14001
ISO 13485

NEW ENGLAND BIOLABS®, ONETAQ®, QUICK-LOAD®, and THERMOPOL® are registered trademarks of New England Biolabs, Inc.

DEEP VENT™ is a trademark of New England Biolabs, Inc.

IGEPAL® is a registered trademark of Rhodia Operations.

TWEEN® is a registered trademark of Uniqema Americas LLC.

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.

Notice to Purchaser: Nucleic acid-based aptamers for use with thermophilic DNA polymerases are licensed exclusively by New England Biolabs, Inc. from SomaLogic, Inc. (See Patent Nos. 5,475,096; 5,670,637; 5,696,249; 5,874,557; and 5,933,502). New England Biolabs, Inc. gives the Buyer/User a non-exclusive license to use the aptamer-based OneTaq® Hot Start 2X Master Mix with Standard Buffer for RESEARCH PURPOSES ONLY. Commercial use of the aptamer-based OneTaq® Hot Start 2X Master Mix with Standard Buffer requires a license from New England Biolabs, Inc. Please contact busdev@neb.com for more information.