Crimson LongAmp® Taq DNA Polymerase

Description: LongAmp® Taq DNA Polymerase is a unique blend of Taq and Deep Vent® DNA Polymerases. The 3′→5′ exo/exonuclease activity of Deep Vent® DNA Polymerase increases the fidelity and robust amplification of Taq Polymerase (1).

Crimson LongAmp® Taq DNA Polymerase combines the robust LongAmp® Taq DNA Polymerase with a colored reaction buffer. Crimson LongAmp Taq DNA Polymerase can amplify up to 20 kb with minimal or no optimization from DNA samples of both low complexity (i.e. plasmid) and high complexity (i.e. genomic DNA). Maximum amplicon sizes are 30 kb from lambda DNA and 50 kb from human genomic DNA. It offers three unique features, including a color indicator for reaction setup, direct loading of PCR product onto a gel and a tracking dye during electrophoresis.

Source: An *E. coli* strain that carries the Taq DNA Polymerase gene from *Thermus aquaticus* YT-1 and an *E. coli* strain that carries the Deep Vent® DNA Polymerase gene from *Pyrococcus* species GB-D.

Applications:
- Long Range PCR
- Colony PCR
- High Throughput PCR

Reagents Supplied with Enzyme:
5X Crimson LongAmp Taq Reaction Buffer

Reaction Conditions: 1X Crimson LongAmp Taq Reaction Buffer, DNA template, primers, 300 µM dNTPs (not included) and 5 units of Crimson LongAmp Taq DNA Polymerase in a total reaction volume of 50 µl.

1X Crimson LongAmp Tag Reaction Buffer:
- 60 mM Tris-So₄ (pH 9.0 @ 25°C)
- 20 mM (NH₄)₂SO₄
- 2 mM MgSO₄
- 3% glycerol
- 0.06% NP-40
- 0.05% Tween-20
- Acid Red

Heat Inactivation: No

Quality Control Assays

Long Amplicon PCR: Crimson LongAmp Taq DNA Polymerase is tested for the ability to amplify a 30 kb amplicon from lambda DNA and a 30 kb amplicon from human genomic DNA.

PCR

The Polymerase Chain Reaction (PCR) is a powerful and sensitive technique for DNA amplification (2). Taq DNA Polymerase is an enzyme widely used in PCR (3). The following guidelines are provided to ensure successful PCR using New England Biolabs’ Crimson LongAmp Taq DNA Polymerase. These guidelines cover routine PCR reactions. Amplification of templates with high GC content, high secondary structure or low template concentrations may require further optimization.

Reaction setup:

We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (94°C).

Thermocycling Conditions for a Routine PCR:

General Guidelines:

1. **Template:** The quality of the DNA template is essential for long-range PCR amplification. Recommended amounts of DNA template for a 50 µl reaction are as follows:

 - **DNA:**
 - **UP TO 15 kb:**
 - Genomic: 1 ng–500 ng
 - Plasmid or Viral: 1 pg–1 ng
 - **ABOVE 15 kb:**
 - 10 ng–1 µg
 - 10 µg–100 µg

 Successful amplification above 20 kb largely depends on the quality of DNA templates and the primer sequences.

2. **Primers:** Oligonucleotide primers are generally 20–40 nucleotides in length and ideally have a GC content of 40–60%. Computer programs such as Primer3 (http://frodo.wi.mit.edu/primer3) can be used to design or analyze primers. For amplions larger than 20 kb, it is desirable to have primers with GC content above 50%, matched Tₘ above 60°C and primers at least 24 nucleotides in length. The final concentration of each primer in a PCR reaction may be 0.05–1 µM, typically 0.1–0.5 µM.

3. **Mg²⁺ and additives:** Mg²⁺ concentration of 1.5–2.0 mM is optimal for most PCR products generated with Crimson LongAmp Taq DNA Polymerase. The final Mg²⁺ concentration in 1X Crimson LongAmp Taq Reaction Buffer is 2 mM. This supports satisfactory amplification of most amplicons. However, Mg²⁺ can be further optimized in 0.5 or 1.0 mM increments using MgSO₄.

Amplification of some difficult targets, like GC-rich sequences, may be improved with additives, such as DMSO (4) or formamide (5).

4. **Deoxynucleotides:** The recommended final concentration of dNTPs for long-range PCR is 300 µM of each deoxynucleotide.

5. **Crimson LongAmp Taq DNA Polymerase concentration:** We generally recommend using Crimson LongAmp Taq DNA Polymerase at a concentration of 100 units/ml (5 units/50 µl reaction). However, the optimal concentration of Crimson LongAmp Taq DNA Polymerase may vary in specialized applications.

6. **Denaturation:** An initial denaturation of 30 seconds at 94°C is sufficient for most amplicons from pure DNA templates. For difficult templates such as GC-rich sequences, a longer denaturation of 2–4 minutes at 94°C is recommended prior to PCR cycling to fully denature the template. With colony PCR, an initial 5 minute denaturation at 94°C is recommended. During thermocycling a 10–30 second denaturation at 94°C is recommended.

7. **Annealing:** The annealing step is typically 15–60 seconds. Annealing temperature is based on the Tₘ of the primer pair and is typically 45–65°C. Annealing temperatures can be optimized by doing a temperature gradient PCR starting 5°C below the calculated Tₘ.

When primers with annealing temperatures above 80°C are used, a 2-step PCR protocol is possible (see #10).
8. Extension:
 The recommended extension temperature is 65°C. Extension times are generally 50 seconds per kb. A final extension of 10 minutes at 65°C is recommended.

9. Cycle number:
 Generally, 25–35 cycles yields sufficient product. Up to 45 cycles may be required to detect low-copy-number targets.

10. 2-step PCR:
 When primers with annealing temperatures above 60°C are used, a 2-step thermocycling protocol is possible.

Thermocycling Conditions for a Routine 2-Step PCR:

<table>
<thead>
<tr>
<th>STEP</th>
<th>TEMP</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Denaturation</td>
<td>94°C</td>
<td>30 seconds</td>
</tr>
<tr>
<td>30 Cycles</td>
<td>94°C</td>
<td>10–30 seconds</td>
</tr>
<tr>
<td>60–65°C</td>
<td>50 seconds/kb</td>
<td></td>
</tr>
<tr>
<td>Final Extension</td>
<td>60–65°C</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Hold</td>
<td>4–10°C</td>
<td></td>
</tr>
</tbody>
</table>

11. PCR product:
 The majority of the PCR products generated using Crimson LongAmp Taq DNA Polymerase contain dA overhangs at the 3’-end; therefore, the PCR products can be ligated to dT/dU-overhang vectors.

FAQs:

1. **What are the advantages or disadvantages of Crimson LongAmp Taq DNA Polymerase?**
 The Crimson LongAmp Taq Reaction Buffer formulation offers three convenient features. First, the 5X Crimson LongAmp Taq Reaction Buffer contains a red dye, which serves as a visual indicator of homogeneous reaction setup. Second, the 5X Crimson LongAmp Taq Reaction buffer facilitates direct loading of PCR products on a gel. Third, the trace amount of red dye in Crimson LongAmp Taq Reaction Buffer works as a tracking dye during electrophoresis.
 If the PCR products will be analyzed by absorbance or fluorescence excitation, acidic red, (λmax = 510 nm) may interfere with the assays; therefore, LongAmp Taq Reaction Buffer is recommended.

2. **How do I remove the dye from my PCR reactions using Crimson LongAmp Taq DNA Polymerase?**
 Spin Columns for PCR clean-up can be used to remove the dye.

3. **What is the recommended enzyme amount when using Crimson LongAmp?**
 In general, we recommend 5 units of Crimson LongAmp Taq DNA Polymerase in a 50 µl PCR reaction. For amplicons < 8 kb, we recommend 1–2.5 units per 50 µl PCR reaction for higher fidelity.

4. **Can the extension step be carried out at 72°C when using Crimson LongAmp?**
 Yes, Crimson LongAmp Taq DNA Polymerase can be used at 72°C. However, extension at 65–68°C is a better choice for most amplicons.

5. **What is the extension rate when using Crimson LongAmp?**
 We recommend 50 seconds per kb for maximum yields. Extension rate such as 30 seconds per kb can be used for targets up to 4 kb using a 3-step PCR protocol. Shorter extension rates such as 15 seconds per kb can be used for targets up to 2 kb using a 3-step PCR protocol on a fast PCR machine (e.g., Piko™ PCR machine, Finnzymes, Oy.).

6. **Can Crimson LongAmp Taq DNA Polymerase be used to amplify GC-rich amplicons?**
 Yes. The addition of DMSO up to 10% helps amplify GC-rich amplicons.

7. **Why is the product a smear when visualized on an agarose gel?**
 When PCR conditions are not optimal, a smear or high level of background is often observed. Try one or more of the following suggestions:
 - Use lower amount of enzymes
 - Use 65°C for extension
 - Raise annealing temperature
 - Try 2-step cycling protocols

References:

Companion Products Sold Separately:
- LongAmp® Taq (Mg-free) Reaction Buffer Pack #B0322S 6.0 ml
- LongAmp® Taq Reaction Buffer Pack #B0323S 6.0 ml
- Crimson LongAmp® Taq Reaction Buffer Pack #B0326S 6.0 ml
- Magnesium Sulfate (MgSO4) Solution #B1003S 6.0 ml
- Diluent F #B8006S 4.0 ml
- LongAmp® Taq PCR Kit #E5200S 100 Reactions
- LongAmp® Taq 2X Master Mix #M0287S 100 Reactions
- LongAmp® Taq DNA Polymerase #M0323S 500 units
- LongAmp® Taq DNA Polymerase #M0323L 2,500 units
- Deoxynucleotide Solution Set #N0446S 25 µmol of each
- Deoxynucleotide Solution Mix #N0447S 8 µmol of each
- Deoxynucleotide Solution Mix #N0447L 40 µmol of each

Patents/Disclaimer: The purchase of this product conveys to the purchaser only the limited, non-transferable right to use the purchased quantity of the product for the purchaser’s own research by the purchaser only under the following U.S. patent claims and foreign counterpart patent claims: U.S. Patent Number 5,436,149 (claims 6-16). No rights are granted to the purchaser to sell, modify for resale or otherwise transfer this product, either alone or as a component of another product, to any third party. Takara Bio reserves all other rights, and this product may not be used in any manner other than as provided herein. For information on obtaining a license to use this product for purposes other than research, please contact Takara Bio Inc., Seta 3-4-1, Otsu, Shiga 520-2193, Japan (Fax +81-77-453-9254).