Exonuclease I Reaction Buffer

1-800-632-7799 info@neb.com www.neb.com

B0293S

6.0 ml Exonuclease I Reaction Buffer (10X) Store at -20°C Lot: 0011502 Exp: 2/18

Description: New England Biolabs supplies a 10X reaction buffer with all of its enzymes. At a 1X concentration this reaction buffer assures optimal activity of the enzyme.

1X Exonuclease I Reaction Buffer:

 $67~\rm{mM}$ Glycine-KOH $6.7~\rm{mM}$ MgCl $_2$ $10~\rm{mM}$ 2-mercaptoethanol (pH $9.5~\rm{@}$ $25\rm{^{\circ}C)}$

Quality Control Assay

16-Hour Incubation: A 50 μ I reaction containing this reaction buffer at a 1X concentration and 1 μ g of HaelII digested ϕ X174 RF I DNA incubated for 16 hours resulted in no detectable non-specific nuclease degradation.

Endonuclease Activity: Incubation of this reaction buffer at a 1X concentration with 1 μ g ϕ X174 RF I DNA for 4 hours at 37°C in 50 μ I reactions resulted in less than 5% conversion to RF II.

CERTIFICATE OF ANALYSIS

Exonuclease I Reaction Buffer

1-800-632-7799 info@neb.com www.neb.com

B0293S

6.0 ml Exonuclease I Reaction Buffer (10X) Store at -20°C Lot: 0011502 Exp: 2/18

Description: New England Biolabs supplies a 10X reaction buffer with all of its enzymes. At a 1X concentration this reaction buffer assures optimal activity of the enzyme.

1X Exonuclease I Reaction Buffer:

 $67~\rm{mM}$ Glycine-KOH $6.7~\rm{mM}$ $\rm{MgCl_2}$ $10~\rm{mM}$ $2{\rm -mercaptoethanol}$ (pH 9.5 @ 25°C)

Quality Control Assay

16-Hour Incubation: A 50 μ I reaction containing this reaction buffer at a 1X concentration and 1 μ g of HaelII digested ϕ X174 RF I DNA incubated for 16 hours resulted in no detectable non-specific nuclease degradation.

Endonuclease Activity: Incubation of this reaction buffer at a 1X concentration with 1 μ g ϕ X174 RF I DNA for 4 hours at 37°C in 50 μ I reactions resulted in less than 5% conversion to RF II.