NEBNext ${ }^{\circledR}$ Multiplex Oligos for Illumina ${ }^{\circledR}$ (96 Unique Dual Index Primer Pairs Set 2)
 NEB \#E6442S/L

Table of Contents

Workflow. 2
Library Preparation Kits for use with NEBNext Multiplex Oligos for Illumina. 3
NEBNext Adaptor for Illumina Overview 3
Section 1
Setting up the PCR Reactions 4
Section 2
Index Pooling Guidelines 5
Kit Components 10
Revision History 11
The NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs Set 2) Includes

The volumes provided are sufficient for preparation of up to 96 reactions (NEB \#E6442S) and 384 reactions (NEB \#E6442L). All reagents should be stored at $-20^{\circ} \mathrm{C}$.

NEBNext Adaptor for Illumina
USER ${ }^{\circledR}$ Enzyme
NEBNext 96 Unique Dual Index Primer Pairs Plate (Set 2)
Each well contains a unique pair of Index Primers (S size contains 1 plate, L size contains 4 plates)

Overview

The NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs Set 2) contains adaptors and primers that are ideally suited for multiplex sample preparation for next-generation sequencing on the Illumina platform (Illumina, Inc.). Each kit component must pass rigorous quality control standards, and for each new lot the entire set of reagents is functionally validated together by construction and sequencing of indexed libraries on an Illumina sequencing platform.

For larger volume requirements, customized and bulk packaging is available by purchasing through the OEM/Bulks department at NEB. Please contact OEM@neb.com for further information.

Workflow

Designed for use in library prep for DNA, ChIP DNA and RNA (but not Small RNA), the NEBNext Adaptors enable high-efficiency adaptor ligation and high library yields, with minimized adaptor-dimer formation. Incorporating a novel hairpin loop structure, the NEBNext Adaptor ligates with increased efficiency to end-repaired, dA-tailed DNA. The loop contains a U, which is removed by treatment with USER Enzyme (a combination of UDG and Endo VIII), to open up the loop and make it available as a substrate for PCR. During PCR, barcodes can be incorporated by use of the NEBNext index primers, thereby enabling multiplexing. The 968 -base index primer pairs included in this kit are pre-mixed and are packaged in a single-use 96 -well plate with a pierceable foil seal. NEBNext Oligos can be used with NEBNext products, and with other standard Illumina-compatible library preparation protocols.

Figure 1. Workflow demonstrating the use of NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs).

Please Refer to the Kit Specific Protocol for using the NEBNext Multiplex Oligos for Illumina
For compatibility of NEBNext Multiplex Oligos please refer to the NEBNext Multiplex Oligos Selection Chart at neb.com/oligos
NEBNext Adaptor for Illumina Overview
NEBNext Adaptor for Illumina sequence:
$5^{\prime}-/ 5$ Phos/GAT CGG AAG AGC ACA CGT CTG AAC TCC AGT CdUA CAC TCT TTC CCT ACA CGA CGC TCT TCC GAT C-s-T-3'
The following sequences are used for adaptor trimming of NEBNext adaptors for Illumina.
Read 1 AGATCGGAAGAGCACACGTCTGAACTCCAGTCA
Read 2 AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

Section 1

Setting up the PCR Reactions

Symbols

This caution sign signifies a step in the protocol that has multiple paths leading to the same end point but is dependent on a user variable, like the amount of input DNA.

1.1. PCR Amplification

For <96 samples, follow the protocol in Section 1.1A. For 96 samples, follow the protocol in Section 1.1B.

1.1A. Setting up the PCR reactions ($<\mathbf{9 6}$ samples)

1.1A.1. Determine the number of libraries that will be amplified and pooled for subsequent sequencing.
1.1A.2. Ensure that you choose a valid combination of barcode primers based on color balance guidelines in Section 2.
1.1A.3. Thaw the 96 Unique Dual Index Primers Plate for $10-15$ minutes at room temperature.
1.1A.4. Remove the hard plastic plate cover. Mix briefly by vortexing and then centrifuge the plate ($280 \times g$ for $\sim 1 \mathrm{~min}$) to collect all of the primer at the bottom of each well.
1.1A.5. Orient the 96 Unique Dual Index Primers Plate Set 2 as indicated in Figure 1.1 (red stripe towards the user). With a pipette tip, pierce the desired well(s) (Figure 1.1A) and transfer the volume of primer mix required for the PCR reaction to the PCR plate/tubes (see specific library construction manual for protocol). It is important to change pipette tips before piercing a new well to avoid cross contamination of indexed primers. Alternatively, the wells can be pierced using the bottom of clean PCR strip tubes (see Figure 1.1B) prior to pipetting the primer mix. Use a new, clean strip tube for each new well to be pierced.

Note: Each well contains a unique pair of index primers. There is enough primer in each well for one PCR reaction. Do not reuse primer if the seal has been previously pierced to avoid contamination with other indexed primers.
1.1A.6. Proceed with the PCR reaction according to the specific library construction manual.

Figure 1.1. NEBNext Unique Dual Index Pairs Plate Set 2

1.1B Setting up the PCR reactions (96 samples)

1.1B.1. Thaw the 96 Unique Dual Index Primer Pairs plate for 10-15 minutes at room temperature.
1.1B.2. Remove the hard plastic plate cover. Mix briefly by vortexing and then centrifuge the plate ($280 \times g$ for $\sim 1 \mathrm{~min}$) to collect all of the primer at the bottom of each well.
1.1B.3. Orient the 96 Unique Dual Index Primer Pairs plate as indicated in Figure 1.1 (red stripe towards the user). With a pipette tip, pierce the wells (Figure 1.1A) and transfer the volume of primer mix required for the PCR reaction to the PCR plate (see specific library construction manual for protocol). It is important to change pipette tips before piercing a new well to avoid cross contamination of indexed primers. Alternatively, the wells can be pierced using the bottom of clean PCR strip tubes (see Figure 1.1B) prior to pipetting the primer mix. Use a new, clean strip tube for each new well to be pierced.

Note: Each well contains a unique pair of index primers. There is enough primer in each well for one PCR reaction. Do not reuse primer if the seal has been previously pierced to avoid contamination with other indexed primers.
1.1B.4. Proceed with the PCR reaction according to the specific library construction manual.

Section 2

Index Pooling Guidelines: 96 Reaction Kit

For a link to download a sample sheet with the index sequences for use with the Illumina Experiment Manager (IEM) please visit the "Usage Guidelines" sub tab located under the "protocols, manuals and usage" tab on the E6442 product page.

For all HiSeq ${ }^{\circledR} / \mathrm{MiSeq}^{\circledR}$ sequencers, Illumina uses a red laser/LED to sequence bases A and C and a green laser/LED to sequence bases G and T. For each cycle, both the red and the green channel need to be read to ensure proper image registration (i.e., A or C must be in each cycle, and G or T must be in each cycle). If this color balance is not maintained, sequencing the index read could fail. Table 2.1 lists some valid combinations (up to 8 -plex) that can be sequenced together. For combinations >8 choose any column and add any plex combinations as needed.

For the $\mathrm{NovaSeq}^{\circledR} / \operatorname{NextSeq}^{\circledR} /$ MiniSeq $^{\circledR}$ which utilize 2 color chemistry, valid index combinations must include some indices that do not start with GG in the first two cycles. Use Table 2.1 for some suggested combinations. Not all possible combinations are listed. Please confirm the color balance of the selected barcodes for low plex pooling. Please refer to Table 2.2 for examples.
The barcoded primers are organized on the plate such that including the primers in rows A and B from any column will produce a color balanced pool. For example, if preparing 2 libraries, choose primer wells A1 and B1. For pools containing 3-8 libraries, add any other primers from that column. For pools containing more than 8 libraries, choose any column and add any other primers as needed.
Table 2.1.

PLEX	WELL POSITION
2	A1, B1 A2, B2 A3, B3 A4, B4 (for additional combinations, confirm color balance according to examples in tables 2.2 and 2.3)
3	$\begin{aligned} & \text { A1, B1, C1 } \\ & \text { A2, B2, C2 } \\ & \text { A3, B3, C3 } \\ & \text { A4, B4, C4 } \\ & \text { (for additional combinations, confirm color balance } \\ & \text { according to examples in tables } 2.2 \text { and } 2.3 \text {) } \end{aligned}$
4	A1, B1, C1, D1 A2, B2, C2, D2 A3, B3, C3, D3 A4, B4, C4, D4 A2, B2, G2, H2 A3, B3, G3, H3 A6, F6, G6, H6 A8, E8, F8, G8 B9, E9, F9, G9 A12, B12, C12, E12
5	A1, B1, C1, D1, E1 A2, B2, C2, D2, E2 A3, B3, C3, D3, E3 A4, B4, C4, D4, E4 A2, B2, C2, G2, H2 A3, B3, C3, G3, H3 A6, E6, F6, G6, H6 A8, E8, F8, G8, H8 A9, B9, E9, F9, G9 A12, B12, C12, D12, E12
6-7	Any 5 plex plus 1-2 adjacent wells from the same column
8	Any column

*Forward Strand Workflow for the following instruments: NovaSeq 6000 with v1.0 reagents kits, MiniSeq with rapid reagent kits, MiSeq ${ }^{\circledR}$, HiSeq ${ }^{\circledR}$ 2000/2500 (pair-end flow cell), HiSeq 3000/4000 (single-read flow cell).

Reverse Strand Workflow for the following instruments: iSeq 100, MiniSeq with standard reagent kits, NextSeq Systems, NovaSeq 6000 with v1.5 reagent kits, HiSeq 2000/5000 (single-read flow cell), HiSeq 3000/4000 (paired-end flow cell).

Table 2.2. lists each index sequence color coded to correspond to the red/green channel. For combinations of valid indices, ensure that you will have signal in both the red and green channels in each cycle. See below for examples of Good and Bad index combinations based on HiSeq/MiSeq guidelines:

GOOD																								
$\begin{gathered} \text { WELL } \\ \text { POSITION } \end{gathered}$	EXPECTED i7 INDEX READ								EXPECTED i5 INDEX READ															
									FORWARD STRAND WORKFLOW*								REVERSE STRAND WORKFLOW*							
A1	C	A	C	T	G	T	A	G	A	A	G	C	G	A	C	T	A	G	T	C	G	C	T	T
B1	G	T	G	C	A	C	G	A	T	G	A	T	A	G	G	C	G	C	C	T	A	T	C	A
C1	A	T	G	T	T	C	C	T	T	C	A	G	C	G	C	C	G	G	C	G	C	T	G	A
D1	C	A	T	T	A	T	G	G	A	G	T	C	A	C	A	T	A	T	G	T	G	A	C	T
	\checkmark		\checkmark																					

BAD																								
$\begin{gathered} \text { WELL } \\ \text { POSITION } \end{gathered}$	EXPECTED i7 INDEX READ								EXPECTED i5 INDEX READ															
									FORWARD STRAND WORKFLOW								REVERSE STRAND WORKFLOW							
A11	A	A	G	G	A	A	G	G	A	C	C	G	G	A	G	T	A	C	T	C	C	G	G	T
B11	G	C	A	C	A	C	A	A	C	T	T	G	A	C	G	A	T	C	G	T	C	A	A	G
C11	G	T	C	A	G	T	A	T	A	G	A	A	G	C	C	T	A	G	G	C	T	T	C	T
D11	A	T	T	C	G	A	G	C	C	T	A	G	G	T	T	G	C	A	A	C	C	T	A	G
	\checkmark	X	\checkmark	X																				

The index primer sequences, for different Illumina sequencer input sheets are indicated in Table 2.4.

Table 2.3. NovaSeq, NextSeq and MiniSeq use 2 color channel sequencing to simplify nucleotide detection. Clusters only in red or green are interpreted as \mathbf{C} or T, respectively. Clusters in both red and green are read as \mathbf{A}, while unlabeled clusters are \mathbf{G} bases. For multiplexing a small number of samples, make sure the final index pool contains some indices that do not start with GG in the first two cycles. Listed here are some examples of good (signal in at least one channel for the first 2 cycles) and bad (the index read begins with GG) index combinations.

GOOD																								
$\begin{gathered} \text { WELL } \\ \text { POSITION } \end{gathered}$	EXPECTED i7 INDEX READ								EXPECTED i5 INDEX READ															
									FORWARD STRAND WORKFLOW								REVERSE STRAND WORKFLOW							
A1	C	A	C	T	G	T	A	G	A	A	G	C	G	A	C	T	A	G	T	C	G	C	T	T
B1	G	T	G	C	A	C	G	A	T	G	A	T	A	G	G	C	G	C	C	T	A	T	C	A
C1	A	T	G	T	T	C	C	T	T	C	A	G	C	G	C	C	G	G	C	G	C	T	G	A
	\checkmark																							

BAD																								
$\begin{gathered} \text { WELL } \\ \text { POSITION } \end{gathered}$	EXPECTED i7 INDEX READ								EXPECTED i5 INDEX READ															
									FORWARD STRAND WORKFLOW								REVERSE STRAND WORKFLOW							
C1	A	T	G	T	T	C	C	T	T	C	A	G	C	G	C	C	G	G	C	G	C	T	G	A
A2	A	A	G	C	G	A	C	T	A	C	G	A	A	T	C	C	G	G	A	T	T	C	G	T
A10	A	G	G	T	A	G	G	A	T	G	T	T	C	G	C	C	G	G	C	G	A	A	C	A
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			\checkmark					

Table 2.4. Lists each index sequence color coded to correspond to the red/green channel. For combinations of valid indices, ensure that you will have signal in both the red and green channels in each cycle.

$\begin{aligned} & \text { WELL } \\ & \text { POSITION } \end{aligned}$	EXPECTED i7 INDEX READ		EXPECTED 55 INDEX READ		
	$\begin{gathered} \text { i7 } \\ \text { INDEX ID } \end{gathered}$		$\begin{gathered} \text { i5 } \\ \text { INDEX ID } \end{gathered}$	$\begin{aligned} & \text { FORWARD } \\ & \text { STRAND } \\ & \text { WORKFLOW } \end{aligned}$	REVERSE STRAND WORKFLOW
A1	P7126	CACTGTAG	P 5134	AAGCGACT	AGTCGCTT
B1	P7148	GTGCACGA	P 5136	TGATAGGC	GCCTATCA
C1	P7133	ATGTTCCT	P 5107	TCAGCGCC	GGCGCTGA
D1	P7141	CATTATGG	P 5108	AGTCACAT	ATGTGACT
E1	P7142	TCTTGTTT	P 5109	CCTTTCAC	GTGAAAGG
F1	P7143	GGCTTACT	P 5111	CTTTCCCT	AGGGAAAG
G1	P7146	ACGATATG	P 5117	G ACAATTC	GAATTGTC
H1	P7152	ATCCGCAG	P 5119	ACACGACT	AGTCGTGT
A2	P7134	AAGCGACT	P 5135	ACGAATCC	GGATTCGT
B2	P7136	TGATAGGC	P 5170	GTCTGAGT	ACTCAGAC
C2	P7153	AACACCAC	P 5122	GGTGTGAG	CTCACACC
D2	P7154	ACCTCTTC	P 5124	CTTGCATA	TATGCAAG
E2	P7155	GTCCGATC	P 5125	GCCAATCC	GGATTGGC
F2	P7157	GAGGACCA	P 5129	ATGCCGGT	ACCGGCAT
G2	P7158	CGCTCTTA	P 5137	CATACCGT	ACGGTATG
H2	P7159	CTGAGCTC	P 5138	ATCAGAGC	GCTCTGAT
A3	P7135	ACGAATCC	P 5127	ATTACCCA	TGGGTAAT
B3	P7170	GTCTGAGT	P 5169	GACTTGTG	CACAAGTC
C3	P7160	CCTAAACT	P 5139	ACGAGGAG	CTCCTCGT
D3	P7162	TGTCACAC	P 5140	TAATCTCG	CGAGATTA
E3	P7165	GATATGAA	P 5144	TACGGCAG	CTGCCGTA
F3	P7166	AAGTGTGG	P 5145	TGCCCATC	G ATGGGCA
G3	P7174	GTTGGCGT	P 5147	CAGCAGTC	GACTGCTG
H3	P7 176	TAGCTGGC	P 5149	TACCGGCT	AGCCGGTA
A4	P 7127	ATTACCCA	P 5126	CACTGTAG	CTACAGTG
B4	P7169	GACTTGTG	P 5148	GTGCACGA	TCGTGCAC
C4	P7177	CAGGTAAG	P 5150	CTCGAAAT	ATTTCGAG
D4	P7181	AAGGAGAC	P 5151	CTCACAAC	GTTGTGAG
E4	P7182	A G TCAGGT	P 5156	GTAACCAC	GTGGTTAC
F4	P7184	ACCGTAAG	P 5161	CATATCCA	TGGATATG
G4	P7185	TATGACGT	P 5163	CGCTAATC	GATTAGCG
H4	P7186	TTGGGTAC	P 5164	CTTCCAAC	GTTGGAAG
A5	P 7101	TTCAATAG	P 5115	TCCCACGA	TCGTGGGA
B5	P7116	GTTTGCTC	P 5132	ACCAACAG	CTGTTGGT
C5	P7187	AGAAGCCT	P 5167	GTCAGTAT	ATACTGAC
D5	P7188	CTAGGTTG	P 5168	ATTCGAGC	GCTCGAAT
E5	P7190	TGTGTCAG	P 5171	CACCTGTA	TACAGGTG
F5	P7191	AGAACCAG	P 5172	CCGACTCT	AGAGTCGG
G5	P7192	ATTGGACA	P 5173	TTGCTGGA	TCCAGCAA
H5	P7385	ACCCGTTG	P 5175	CAGCTTCG	CGAAGCTG

$\begin{gathered} \text { WELL } \\ \text { POSITION } \end{gathered}$	EXPECTED i7 INDEX READ		EXPECTED i5 INDEX READ		
	i7 INDEX ID		i5 INDEX ID	FORWARD STRAND WORKFLOW	REVERSE STRAND WORKFLOW
A6	P 7105	ACCGGAGT	P 5114	AAGGAAGG	CCTTCCTT
B6	P 7118	CTTGACGA	P 5131	GCACACAA	TTGTGTGC
C6	P7998	GCCACGAC	P 5178	CCTCGGGT	ACCCGAGG
D6	P7099	TCTGGAAC	P 5179	TAGCACCT	AGGTGCTA
E6	P 7100	CACTAGAC	P 5180	TGAGGACT	AGTCCTCA
F6	P 7102	TTGCGTTA	P 5183	TTCCCGAA	TTCGGGAA
G6	P 7103	CCTATGCA	P 5189	GAGTCGAT	ATCGACTC
H6	P 7104	CAACCGAG	P 5997	TACCTGTG	CACAGGTA
A7	P 7106	TGTTCGCC	P 5113	AGGTAGGA	TCCTACCT
B7	P 7121	ACAAGGCA	P 5130	TCGCGCAA	TTGCGCGA
C7	P 7107	TCAGCGCC	P 5133	ATGTTCCT	AGGAACAT
D7	P 7108	AGTCACAT	P 5141	CATTATGG	CCATAATG
E7	P 7109	CCTTTCAC	P 5142	TCTTGTTT	AAACAAGA
F7	P 7111	CTTTCCCT	P 5143	GGCTTACT	AGTAAGCC
G7	P 7117	GACAATTC	P 5146	ACGATATG	CATATCGT
H7	P 7119	ACACGACT	P 5152	ATCCGCAG	CTGCGGAT
A8	P 7110	CCTGTCAA	P 5112	ATGGCTGT	ACAGCCAT
B8	P 7123	CCATCCGC	P 5128	AAGGCGTA	TACGCCTT
C8	P 7122	GGTGTGAG	P 5153	AACACCAC	GTGGTGTT
D8	P 7124	CTTGCATA	P 5154	ACCTCTTC	GAAGAGGT
E8	P 7125	GCCAATCC	P 5155	GTCCGATC	GATCGGAC
F8	P 7129	ATGCCGGT	P 5157	GAGGACCA	TGGTCCTC
G8	P 7137	CATACCGT	P 5158	CGCTCTTA	TAAGAGCG
H8	P7138	ATCAGAGC	P 5159	CTGAGCTC	GAGCTCAG
A9	P 7112	ATGGCTGT	P 5110	CCTGTCAA	TTGACAGG
B9	P 7128	AAGGCGTA	P 5123	CCATCCGC	GCGGATGG
C9	P7139	ACGAGGAG	P 5160	CCTAAACT	AGTTTAGG
D9	P 7140	TAATCTCG	P 5162	TGTCACAC	GTGTGACA
E9	P 7144	TACGGCAG	P 5165	GATATGAA	TTCATATC
F9	P 7145	TGCCCATC	P 5166	AAGTGTGG	CCACACTT
G9	P 7147	CAGCAGTC	P 5174	GTTGGCGT	ACGCCAAC
H9	P 7149	TACCGGCT	P 5176	TAGCTGGC	GCCAGCTA
A10	P 7113	AGGTAGGA	P 5106	TGTTCGCC	GGCGAACA
B10	P7130	TCGCGCAA	P 5121	ACAAGGCA	TGCCTTGT
C10	P 7150	CTCGAAAT	P 5177	CAGGTAAG	CTTACCTG
D10	P 7151	CTCACAAC	P 5181	AAGGAGAC	GTCTCCTT
E10	P 7156	GTAACCAC	P 5182	AGTCAGGT	ACCTGACT
F10	P 7161	CATATCCA	P 5184	ACCGTAAG	CTTACGGT
G10	P 7163	CGCTAATC	P 5185	TATGACGT	ACGTCATA
H10	P 7164	CTTCCAAC	P 5186	TTGGGTAC	GTACCCAA

$\begin{aligned} & \text { WELL } \\ & \text { POSITION } \end{aligned}$	EXPECTED i7 INDEX READ		EXPECTED i5 INDEX READ		
	$\begin{gathered} \text { i7 } \\ \text { INDEX ID } \end{gathered}$		$\begin{gathered} \text { i5 } \\ \text { INDEX ID } \end{gathered}$	FORWARD STRAND WORKFLOW	REVERSE STRAND WORKFLOW
A11	P 7114	A AGGAAGG	P 5105	ACCGGAGT	ACTCCGGT
B11	P7131	GCACACAA	P 5118	CTTGACGA	TCGTCAAG
C11	P7167	GTCAGTAT	P 5187	AGAAGCCT	AGGCTTCT
D11	P7168	ATTCGAGC	P 5188	CTAGGTTG	CAACCTAG
E11	P7171	CACCTGTA	P 5190	TGTGTCAG	CTGACACA
F11	P7172	CCGACTCT	P 5191	AGAACCAG	CTGGTTCT
G11	P7173	TTGCTGGA	P 5192	ATTGGACA	TGTCCAAT
H11	P7175	CAGCTTCG	P 5385	ACCCGTTG	CAACGGGT
A12	P7115	TCCCACGA	P 5101	TTCAATAG	CTATTGAA
B12	P7132	ACCAACAG	P 5116	GTTTGCTC	GAGCAAAC
C12	P 7178	CCTCGGGT	P 5998	GCCACGAC	GTCGTGGC
D12	P7179	TAGCACCT	P 5099	TCTGGAAC	GTTCCAGA
E12	P7180	TGAGGACT	P 5100	CACTAGAC	GTCTAGTG
F12	P7183	TTCCCGAA	P 5102	TTGCGTTA	TAACGCAA
G12	P7189	GAGTCGAT	P 5103	CCTATGCA	TGCATAGG
H12	P7997	TACCTGTG	P 5104	CAACCGAG	CTCGGTTG

Kit Components

The NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs Set 2) are functionally validated through library preparation using the NEBNext Library Prep Kits and sequencing on the Illumina platforms.

NEB \#E6442S Table of Components

NEB \#	CONCENTRATION	PRODUCT	VOLUME
E6612A	$15 \mu \mathrm{M}$	NEBNext Adaptor for Illumina	0.96 ml
E6610A		USER Enzyme	0.288 ml
E6443A	$5 \mu \mathrm{M}$ each	NEBNext 96 Unique Dual Index Primer Pairs Plate (Set 2)	1 plate $(10 \mu \mathrm{l} / \mathrm{well})$

NEB \#E6442L Table of Components

NEB \#	CONCENTRATION	PRODUCT	VOLUME
E6612A	$15 \mu \mathrm{M}$	NEBNext Adaptor for Illumina	$4 \times 0.96 \mathrm{ml}$
E6610AA		USER Enzyme	$2 \times 0.576 \mathrm{ml}$
E6443A	$5 \mu \mathrm{M}$ each	NEBNext 96 Unique Dual Index Primer Pairs Plate (Set 2)	4 plates $(10 \mu \mathrm{l} / \mathrm{well})$

Note :
For the NEBNext Adaptor for Illumina sequence, please see NEBNext Multiplex Oligos for Illumina (Index Primers Set 1), NEB \#E7335, Manual.

Revision History

REVISION \#	DESCRIPTION	DATE
1.0	N/A	$9 / 19$
2.0	Update concentration of E6443A in Table of Components	$7 / 20$
3.0	Updating tables to have the most current Illumina instrument information and removed HiSeqX.	$2 / 21$
4.0	Update Protocol and Tables	$7 / 22$

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.
This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc. The use of trademark symbols does not necessarily indicate that the name is trademarked in the country where it is being read; rather, it indicates where the document was originally developed. For more information about commercial rights, please email us at busdev@neb.com. While NEB develops and validates its products for various applications, the use of this product may require you to obtain additional third party intellectual property rights for certain applications

B CORPORATION ${ }^{\circledR}$ is a registered trademark of B Lab IP, LLC, Inc.
ILLUMINA ${ }^{\circledR}$, HISEQ ${ }^{\circledR}$, MINISEQ ${ }^{\circledR}$, MISEQ ${ }^{\circledR}$, NEXTSEQ $^{\circledR}$ and NOVASEQ $^{\circledR}$ are registered trademarks of Illumina, Inc.
© Copyright 2022, New England Biolabs, Inc.; all rights reserved

